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Abstract
According to common relevance-judgments regimes, such as TREC’s, a document can be 
deemed relevant to a query even if it contains a very short passage of text with pertinent 
information. This fact has motivated work on passage-based document retrieval: document 
ranking methods that induce information from the document’s passages. However, the 
main source of passage-based information utilized was passage-query similarities. In this 
paper, we address the challenge of utilizing richer sources of passage-based information 
to improve document retrieval effectiveness. Specifically, we devise a suite of learning-to-
rank-based document retrieval methods that utilize an effective ranking of passages pro-
duced in response to the query. Some of the methods quantify the ranking of the passages 
of a document. Others utilize the feature-based representation of the document’s passages. 
Empirical evaluation attests to the clear merits of our methods with respect to highly effec-
tive baselines. Our best performing method is based on learning a document ranking func-
tion using document-query features and passage-query features of the document’s passage 
most highly ranked; the passage-query features are those used to learn a highly effective 
passage ranker.

Keywords  Document retrieval · Passage retrieval · Learning-to-rank

1  Introduction

The ad hoc retrieval task is ranking documents in a corpus in response to a query by 
presumed relevance to the information need the query represents. Often, documents are 
deemed relevant even if they contain only a short passage with pertinent information; e.g., 
by TREC’s relevance judgment regime (Voorhees and Harman 2005). Passages are (rela-
tively short) sequences of text in a document.
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As a result, there has been a large body of work on passage-based document retrieval: 
utilizing information induced from document passages to rank the documents; e.g., Callan 
(1994), Wilkinson (1994), Kaszkiel and Zobel (2001), Liu and Croft (2002) and Bendersky 
and Kurland (2010). The most commonly used passage-based document retrieval methods 
rank a document by the highest query similarity exhibited by any of its passages (Callan 
1994; Wilkinson 1994; Kaszkiel and Zobel 2001; Liu and Croft 2002; Bendersky and Kur-
land 2010) and by integrating this similarity with the document-query similarity (Callan 
1994; Wilkinson 1994; Bendersky and Kurland 2010).

The passage-query (surface level) similarity is one out of many possible estimates 
for passage relevance. Indeed, various passage-relevance estimates were devised for the 
task of passage retrieval, a.k.a focused retrieval; e.g., Salton et al. (1993), Jiang and Zhai 
(2004), Murdock and Croft (2005), Murdock (2006), Metzler and Kanungo (2008), Buf-
foni et  al. (2010), Fernández et  al. (2011), Fernández and Losada (2012), Carmel et  al. 
(2013), Keikha et  al. (2014b), Chen et  al. (2015, 2017), Yang et  al. (2016) and Yulianti 
et al. (2016). That is, passages are ranked in response to a query using passage-relevance 
estimates. The merits of integrating the estimates using learning-to-rank (LTR) approaches 
were also demonstrated (Metzler and Kanungo 2008; Buffoni et al. 2010; Chen et al. 2015, 
2017; Yang et al. 2016; Yulianti et al. 2016).

Motivated by the (recent) progress in devising effective passage retrieval methods, spe-
cifically, using LTR methods, and the fact that the main passage-based information used 
by most passage-based document retrieval methods is confined to passage-query similari-
ties, we address the following challenge: devising LTR methods for document retrieval that 
utilize various types of information induced from effective passage ranking. Some of the 
methods we present are not based on a specific passage retrieval approach used to induce 
the passage ranking. Others are based on the premise that passages were ranked in response 
to the query using an LTR method that utilizes passage-based features. A case in point, the 
most effective LTR-based document retrieval method that we present uses both document-
based and passage-based features; the latter are those of the document’s passage which is 
the most highly ranked by an LTR method used to rank passages.

Each of the methods we present can be viewed as a conceptual analog, or generalization, 
of previously proposed approaches for either (1) passage-based document retrieval, where 
these approaches do not utilize learning-to-rank or feature-based representations (Cal-
lan 1994; Wilkinson 1994; Bendersky and Kurland 2010), or (2) cluster-based document 
retrieval; i.e., using information induced from clusters of similar documents to improve 
the effectiveness of document retrieval (Kurland and Domshlak 2008; Raiber and Kurland 
2013).

In addition to presenting novel passage-based document retrieval methods, we also pro-
pose new features for learning-to-rank passages. These features are query-independent pas-
sage relevance priors adapted from work on document retrieval over the Web (Bendersky 
et al. 2011).

Extensive empirical evaluation shows that our passage-based document retrieval 
approaches significantly outperform strong baselines. Further analysis demonstrates the 
importance of (1) utilizing an effective passage ranking, and (2) using information induced 
from the document’s passage that is the most highly ranked. In addition, we demonstrate 
the merits of using the query-independent passage features we propose for the task of pas-
sage retrieval. Specifically, integrating these features with previously proposed ones in a 
learning-to-rank approach results in passage retrieval performance that transcends the 
state-of-the-art.
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Our main contributions can be summarized as follows:

•	 We propose a few (mainly learning-to-rank) passage-based document retrieval 
approaches. Most of these methods are generalization of previously proposed passage-
based document retrieval approaches which do not use learning-to-rank or feature-
based representations.

•	 Our proposed methods post state-of-the-art retrieval performance across different col-
lections and different feature sets.

•	 We demonstrate the effectiveness for passage retrieval of using passage-relevance pri-
ors adopted from work on document-relevance priors in Web retrieval.

2 � Related work

The line of work most related to ours is on passage-based document retrieval (Hearst and 
Plaunt 1993; Callan 1994; Mittendorf and Schäuble 1994; Wilkinson 1994; Kaszkiel and 
Zobel 1997; Denoyer et al. 2001; Kaszkiel and Zobel 2001; Liu and Croft 2002; Bender-
sky and Kurland 2008; Na et al. 2008; Wang and Si 2008; Wan et al. 2008; Bendersky and 
Kurland 2010; Krikon et al. 2010; Lang et al. 2010). As already noted, the most commonly 
used passage-based document retrieval methods are ranking a document by the maximum 
query-similarity of its passages (Callan 1994; Wilkinson 1994; Kaszkiel and Zobel 1997, 
2001; Liu and Croft 2002; Na et al. 2008; Bendersky and Kurland 2010) and by interpo-
lating this similarity with the document-query similarity (Callan 1994; Wilkinson 1994; 
Na et  al. 2008; Bendersky and Kurland 2010). We show that our best-performing meth-
ods substantially outperform a highly effective method that integrates document-query and 
passage-query similarities (Bendersky and Kurland 2010).

In Wang and Si (2008), features based on passage-query similarities were used to learn 
a document ranker (Wang and Si 2008). The induced ranking was fused with a query-sim-
ilarity-based document ranking. One of our proposed methods generalizes this approach 
by using many more passage features, integrating the resultant passage-based document 
ranking with that produced by learning to rank documents, and applying state-of-the-art 
learning-to-rank approaches. While this approach is highly effective, it is outperformed by 
our best performing method.

Recently, Yulianti et  al. (2018) presented a method that selects (or generates) a pas-
sage from a document in response to a query using information induced from a community 
question answering system. Then, features of the passage (not necessarily those used for 
selecting the passage) along with document features are used to represent the document. 
This approach is reminiscent of our best performing method which uses passage features 
and document features to represent a document. There are, however, major differences 
between the two. Our method is not based on an external resource. Furthermore, we utilize 
passage ranking that is induced using a learning-to-rank approach with passage features 
while in Yulianti et al. (2018) this is not the case. In addition, the passage features used 
in our method are the same as those used for ranking passages which is not the case in 
Yulianti et al. (2018). We demonstrate the merits of using the passage features that are used 
for (effective) passage ranking to represent a document. We also show the merits of using 
passage-relevance prior estimates adopted from work on Web retrieval to rank passages. 
Some of these estimates were used by Yulianti et  al. (2018) to rank documents but not 
passages.
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Recently, a neural-network approach was presented for passage-based document 
retrieval (Fan et al. 2018). Passage-query relevance signals (scores) are estimated using 
neural-network matching models and then aggregated to yield a document score. A dif-
ference with several of our models, in addition to using neural networks rather than a 
feature-based approach, is that ranking induced over passages from different documents 
is not utilized. A feature-based learning-to-rank baseline used in this work (Fan et  al. 
2018) represents a document using its features and the average, maximum and minimum 
values of query-similarities of its constituent passages. Therefore, this baseline is con-
ceptually reminiscent one of our proposed methods which uses various aggregates of the 
feature values of document’s passages together with the document features to represent 
documents. We show that there are passage-based features much more effective than pas-
sage-query similarities for estimating passage relevance, and accordingly, use aggregates 
of these features’ values to represent documents.

Some passage-based document retrieval methods use query expansion (Liu and 
Croft 2002; Lang et al. 2010) or inter-passage similarities (Wan et al. 2008; Wang and 
Si 2008; Krikon et  al. 2010). Integrating query expansion and information induced 
from inter-passage similarities in our approaches is an interesting future direction.

Passage-based document retrieval approaches utilize term proximity information 
by the virtue of using passages. There are many other approaches for utilizing term 
proximities (Metzler and Croft 2005, 2007a; Tao and Zhai 2007; Lv and Zhai 2009; 
Zhao and Yun 2009; Lang et al. 2010; Lv and Zhai 2010; Miao et al. 2012). We show 
that our best performing method outperforms a state-of-the-art term proximity model: 
the sequential dependence model from the Markov Random Field framework (Metzler 
and Croft 2005).

The vast majority of previous work on passage-based document retrieval has focused on 
using passages marked prior to retrieval time. There are some methods that simultaneously 
mark passages and use them for retrieval (Mittendorf and Schäuble 1994; Denoyer et  al. 
2001; Kaszkiel and Zobel 2001). Our methods are not committed to a specific approach of 
passage markup.

To implement and evaluate our passage-based document retrieval methods, we use 
a passage ranking method that is based on learning-to-rank. Some of the features we 
use for passage retrieval are adopted from work on retrieving sentences to create snip-
pets (Metzler and Kanungo 2008) and retrieving sentences (and more generally pas-
sages) as answers to non-factoid questions (Keikha et al. 2014b; Chen et al. 2015; Yang 
et al. 2016). We show that passage retrieval performance can be significantly improved if 
we also use query-independent passage relevance priors adapted from work on devising 
document relevance priors for Web retrieval (Bendersky et al. 2011). Query-independent 
sentence priors different than ours, mainly based on opinion/sentiment analysis, were 
used in past work on sentence retrieval (Fernández and Losada 2012). More generally, 
there is a big body of work on retrieving passages; e.g., Salton et al. (1993), Mittendorf 
and Schäuble (1994), Jiang and Zhai (2004), Carmel et al. (2013), Keikha et al. (2014b), 
Keikha et al. (2014a), Chen et al. (2017). Our focus is different: we devise methods that 
utilize passage retrieval to improve document retrieval. Yet, we empirically show that the 
passage retrieval method we use in our document retrieval methods outperforms state-
of-the-art passage retrieval approaches. Still, as already noted, our document retrieval 
methods are not committed to a specific passage retrieval approach.
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3 � Retrieval framework

Our goal is to rank documents in corpus D with respect to query q . We devise document 
retrieval methods that utilize information induced from document passages. A passage is a 
sequence of text in a document. We assume that passages were marked in documents using 
some approach; g ∈ d indicates that passage g is part of document d . The retrieval methods 
we present are not dependent on the type of passages used. If S is a document set, G(S) 
denotes the ranked list of all passages of documents in S , where ranking was performed 
using some passage retrieval method.

Let Dinit be an initially retrieved document list produced in response to q by using some 
retrieval method; e.g., in the experiments reported in Sect.  4 we use standard language-
model-based retrieval. Then, a learning-to-rank (LTR) method (Liu 2009) is used to re-
rank Dinit ; the resultant ranked list is denoted DLTR . The only assumption we make about 
the LTR method is that it uses a feature-based vector representation, �(d,q) , for every pair of 
a document d and the query q.

We devise document ranking methods that re-rank DLTR using information induced from 
the ranked list G(DLTR) of all passages in documents in DLTR.1 Some of the approaches we 
present do not depend on the passage ranking method used to produce G(DLTR) . Others 
are based on the assumption that the ranking is induced using an LTR approach applied 
to passages; a pair of passage g and query q is represented using the feature vector �(g,q) . 
The basic premise is that effective passage ranking can be utilized to improve document 
ranking.

3.1 � Passage‑based document ranking

We now present five passage-based document retrieval approaches that can be used to re-
rank DLTR . These methods are either inspired by, or bear important connections to, existing 
passage-based and cluster ranking approaches. Cluster ranking methods rank clusters of 
similar documents by the presumed percentage of relevant documents they contain; e.g., 
Liu and Croft (2004), Kurland and Krikon (2011) and Raiber and Kurland (2013).

The proposed methods and the different aspects by which they differ are summarized 
in Table 1. These aspects, as well as the connections and differences between the methods, 
are discussed below.

3.1.1 � A fusion‑based approach

The first method we consider is conceptually reminiscent of a commonly used passage-
based document retrieval approach. The approach linearly interpolates the document-query 
similarity score with the highest query similarity score of a passage in the document (Cal-
lan 1994; Wilkinson 1994; Bendersky and Kurland 2010).

Here, instead of relying on query similarities, we use the ranking of documents in 
DLTR and that of the passages in G(DLTR) to induce document and passage retrieval scores, 
respectively. Specifically, we apply the rank-to-score transformation used in the highly 
effective reciprocal rank fusion method (Cormack et al. 2009). That is, the score assigned 
to item x , passage or document, with respect to the list L it is in, G(DLTR) or DLTR , is:

1  Note that these passages are also the passages of documents in D
init

 since D
LTR

 is a re-rank of D
init

.
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rL(x) is x ’s rank in L ; the top item is at rank 1; � is a free parameter.
The final retrieval score of document d ( ∈ DLTR ) is:

� is a free parameter. Thus, d is ranked high if it was originally ranked high in DLTR and at 
least one of its passages was ranked high in G(DLTR).

The method just presented essentially applies the reciprocal rank fusion approach to fuse 
two rankings of the documents in DLTR and is therefore denoted RRF. The first is the LTR-
based ranking of DLTR . That is, documents are ranked using a ranking function learned based 
on document-only features. The second ranking is based on the highest rank in G(DLTR) of 
a document’s passage. In other words, the retrieval score of a document with respect to this 
ranking is based on the reciprocal rank of its passage that is the highest ranked. Note that the 
method is agnostic to the retrieval methods that were used to produce DLTR and G(DLTR) ; e.g., 
these need not even be LTR methods. All the method relies on is the ranking of documents 
and the ranking of passages of these documents.

3.1.2 � Utilizing various passage‑ranking statistics

The RRF method utilizes only the highest ranked passage of a document to assign its final 
retrieval score in Eq. 1. The next method, “statistics about multiple passages per document” 
(SMPD), ranks a document by utilizing various statistics regarding the ranking of the docu-
ment’s passages in G(DLTR).

The feature vector used to represent a query-document pair is:

ScoreL(x)
def
=

1

� + rL(x)
;

(1)Score(d;q)
def
=�ScoreDLTR

(d) + (1 − �)max
g∈d

ScoreG(DLTR)
(g);

�
SMPD
(d,q)

def
=�(d,q) ⊕ �

�
(g∈d,q).

Table 1   Summary of the proposed passage-based document retrieval methods

*indicates that a method (column) has (or exhibits) the property (row)

RRF SMPD JPDs JPDm FPD

Document retrieval score
Fusion of retrieval scores ∗ ∗

LTR ∗ ∗ ∗ ∗

Passages that directly affect document retrieval scores
The document’s most highly ranked passage ∗ ∗ ∗

All of the document’s passages ∗ ∗

Using passages’ features to learn a document ranking function?
Yes ∗ ∗ ∗

No ∗ ∗

Assumptions
The document ranking is induced using an LTR approach ∗ ∗ ∗ ∗

The passage ranking is induced using an LTR approach ∗ ∗ ∗ ∗
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�
SMPD
(d,q)

 is the concatenation of �(d,q) : the original feature vector used to learn and apply the 
ranking function that served to induce DLTR and ��(g∈d,q) : a vector composed of passage-
based estimates. The estimates are the (1) maximum (max), (2) minimum (min), (3) aver-
age (avg), and (4) standard deviation (std) of ScoreG(DLTR)

(g) for g ∈ d ; (5) the fraction of 
passages in d that are among the 50 (top50) and (6) 100 (top100) highest ranked passages 
in G(DLTR) ; and, (7) the number of passages in d (numPsg).

The rationale behind the SMPD method is to augment the original document-query rep-
resentation with “statistics” about the potential relevance of its passages. The premise is that 
the relative ranking of passages in G(DLTR) can attest to their relevance to some extent. While 
SMPD is based on the fact that DLTR was indeed produced using an LTR approach, it is not 
committed to a specific passage ranking method used to produce G(DLTR).

We note an interesting conceptual connection between SMPD and a cluster-based docu-
ment retrieval method (Kurland and Domshlak 2008). The method ranks clusters of similar 
documents using measures that quantify the ranking of their constituent documents in a 
document ranking. In SMPD, we rank a document using measures that quantify the rank-
ing of its constituent passages.

3.1.3 � Joint passage‑document representation using a single passage

The next method, “joint passage document with a single passage” (JPDs), similarly to the 
RRF method, uses d ’s passage gmax that is the highest ranked in G(DLTR) . However, JPDs 
does not rely on gmax ’s absolute rank in G(DLTR) , but only on the fact that it is the highest 
ranked among d ’s passages. JPDs is based on the premise that both DLTR and G(DLTR) were 
produced using LTR methods with feature vectors �(d,q) and �(gmax ,q) , respectively. These two 
feature vectors are concatenated, and the resultant feature vector

is used for learning a ranker.
An important principle underlying JPDs is to avoid metric divergence (Metzler and 

Croft 2005). That is, the features used to estimate the relevance of the document’s passage 
that is presumably the most relevant—according to G(DLTR) ’s ranking—are used directly, 
along with document-based features, to learn a document ranking function.

JPDs could be viewed as a conceptual generalization of the approach of smoothing a 
document language model with that induced from its passage which is the most similar 
to the query (Bendersky and Kurland 2008). That is, both approaches augment the doc-
ument representation with information about its passage which is either the most query 
similar (Bendersky and Kurland 2008) or the most highly ranked using a learning-to-rank 
approach (JPDs). The difference is unsupervised method (Bendersky and Kurland 2008) 
versus a supervised method (JPDs), and in accordance, representations (language models 
vs. feature vectors) and their integration (linear interpolation vs. concatenation).

3.1.4 � Joint passage‑document representation using multiple passages

The JPDs method uses information induced from a single passage of d to augment the doc-
ument-query feature-vector representation. We next consider an alternative, “joint passage 
document with multiple passages”—JPDm in short. The document-query representation 
in JPDm utilizes information induced, potentially, from multiple passages. Specifically, we 

�
JPDs
(d,q)

def
=�(d,q) ⊕ �(gmax,q)

,
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define a feature vector, aggg∈d(�(g,q)) , based on the same passage features used to represent 
passages in the LTR method that produced G(DLTR) . Each feature value in aggg∈d(�(g,q)) is 
the aggregate of the corresponding feature values of all d ’s passages. The feature vector is 
then concatenated with the original document-query feature vector

�
JPDm
(d,q)

 is used for learning a document ranking function. The resultant methods are termed 
JPDm-avg, JPDm-max and JPDm-min when using the average, maximum and minimum 
aggregate functions, respectively. We note that JPDm is the only approach we consider 
which does not use the ranking of passages in G(DLTR).

It is important to highlight an additional difference between the JPDm and SMPD meth-
ods, as both augment the document-query feature vector for learning a document ranking 
function with information induced from multiple passages in the document. While SMPD 
uses statistics mainly about the ranking of the document’s passages, JPDm utilizes passage-
level features which were used to learn a passage ranker. Thus, the empirical comparison 
between JPDm and SMPD can help to shed some light on the relative merits of using only 
rank information (SMPD) versus using only feature-based information (JPDm) for multiple 
passages in the document.

Additional motivation for studying the performance of JPDm is the interesting con-
ceptual connection between JPDm and the ClustMRF cluster ranking model (Raiber and 
Kurland 2013). In ClustMRF, clusters are ranked with respect to a query using an LTR 
approach. A cluster-query pair is represented using a feature vector. Some of the features 
are aggregates of document-query features, where documents are those in the cluster; e.g., 
document-query similarities and document relevance priors. Similarly, JPDm represents a 
document using features of passages in the document. Thus, the two approaches are con-
ceptually similar by the virtue of using aggregates of feature values of a “small/short” (doc/
passage) entity to represent its ambient entity (document cluster/document).

Finally, we note the important difference between JPDs and JPDm. In JPDs, the pas-
sage-based features that are added to the document features represent a single passage; this 
is the document’s most highly ranked passage. In contrast, in JPDm, the passage-based 
features used to augment the document features do not represent a single passage: these are 
aggregates, over the document’s passages, of feature values used in the passages’ feature-
vector representations. For example, in JPDm-avg, a single passage-based feature value 
would be the average feature value—where average is computed over the document’s pas-
sages—for some feature in the feature-vector representation of the documents’ passages.

3.1.5 � Two‑stage retrieval

To further study the merits of simultaneously using document and passage features to learn 
a document ranking function as in the JPDs and JPDm methods presented above, we next 
explore the FPD method (“first passage then document”).

�
JPDm
(d,q)

def
=�(d,q) ⊕ aggg∈d(�(g,q));
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A document ranking function is learned by representing the document-query pair with 
�(gmax ,q)

—the feature vector for the document’s passage gmax that is the most highly ranked 
in G(DLTR) . That is, the learned document ranker utilizes only passage-based features. The 
ranker is then used to re-rank DLTR . The resultant ranking is fused with DLTR ’s original 
ranking using the reciprocal rank approach as in RRF. See Sect. 3.1.1 for further details.2

It is important to contrast the FPD and RRF methods. Both fuse the original ranking of 
DLTR with a ranking based on utilizing passage-based information. The difference is the 
type of passage-based information used. While RRF utilizes the rank in G(DLTR) of the 
document’s most highly ranked passage to directly induce document ranking, FPD utilizes 
the passage-query feature vector of this passage to learn and apply a document ranker.

We further note that FPD depends on the fact that G(DLTR) was induced using an LTR 
approach. In contrast, FPD is not committed to a specific retrieval method used to induce 
DLTR.

4 � Experimental setting

The datasets used for experiments are specified in Table 2. ROBUST, WT10G, GOV2 and 
ClueWeb are TREC datasets. ROBUST mostly contains newswire documents. WT10G is 
a small Web corpus. GOV2 is a crawl of the .gov domain. ClueWeb is a large-scale (noisy) 
Web collection. For ClueWeb we removed from the initial document rankings, described 
below, documents with a Waterloo’s spam classifier score below 50 (Cormack et al. 2011).

The TREC datasets do not have passage-level relevance judgments that are needed for 
learning a passage-ranking method. Thus, to learn a passage ranker we used the INEX 
dataset. The learned ranker was utilized by our passage-based document retrieval methods 
over all datasets. The INEX dataset was used for the focused (passage) retrieval tracks in 
2009 and 2010 (Geva et al. 2010; Arvola et al. 2011). It includes relevance judgments for 
virtually every character in a relevant document; that is, annotators marked the pieces of 
relevant text in relevant documents. The dataset contains English Wikipedia documents 
from which we removed all XML tags; i.e., we treated the documents as plaintext. We use 
this dataset not only for learning a passage ranker, but also for evaluating the effectiveness 

Table 2   Datasets used for experiments

Corpus Data # of docs Avg doc. length Queries

ROBUST Disks 4 and 5-CR 528,155 479 301–450, 601–700
WT10G WT10g 1,692,096 607 451–550
GOV2 GOV2 25,205,179 930 701–850
ClueWeb ClueWeb09 (Category B) 50,220,423 807 1–200
INEX 2009 and 2010 2,666,190 552 2009001–2009115, 

2010001–2010107
AQUAINT AQUAINT 1,033,461 436 N1–N100

2  Experiments—actual numbers are omitted as they convey no additional insight—showed that simply 
using the passage-based document ranking without the additional fusion often yields performance (substan-
tially) inferior to that of FPD.
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of the learned ranker, as well as evaluating the effectiveness of our passage-based docu-
ment retrieval methods in addition to the evaluation performed over the TREC datasets.

The passage features we propose are also used for learning and evaluating a passage 
ranker over the AQUAINT collection which was used for the novelty tracks in TREC 2003 
and 2004 (Soboroff and Harman 2003; Soboroff 2004). In these tracks, relevant documents 
have sentence-level relevance judgments. To perform sentence (passage) retrieval using the 
queries in both tracks, we follow the experimental setting in the 2003 track and rank the 
sentences in the set of relevant documents that were provided to participants.

Titles of topics served for queries. (Queries with no relevant documents in the qrels 
were removed.) The Indri toolkit was used for all experiments.3 We applied Krovetz stem-
ming to queries, documents (and their passages) and removed stopwords on the INQUERY 
list only from queries. We used non-overlapping fixed-length windows of 300 terms for 
passages in our document retrieval methods. Such passages were shown to be effective for 
passage-based document retrieval (Kaszkiel and Zobel 2001). In Sect. 5 we study the effect 
of passage length on passage retrieval performance.

Our main experiments are conducted with two learning-to-rank (LTR) methods for rank-
ing documents and passages: LambdaMART (Burges 2010) (LMart in short)4 or a linear 
RankSVM (Joachims 2006)5 (SVM in short). LambdaMART was trained for NDCG@10. 
In Sect. 5.1.7 we present experimental results for two additional learning-to-rank methods.

We measure the similarity between texts x and y (e.g., a query, a document or a passage) 
using the minus cross entropy between the unigram language models induced from them:

�MLE
x

 is the unsmoothed maximum likelihood estimate induced from x and �Dir
y

 is a Dir-
ichlet smoothed language model induced from y (Zhai and Lafferty 2001).

The two-tailed paired t-test with a 95% confidence level was used to determine statisti-
cally significant retrieval performance differences. We applied Bonferroni correction for 
multiple hypothesis testing; i.e., when comparing a method with multiple baselines.

4.1 � Document retrieval

We use a standard (unigram) language model approach (LM) to retrieve an initial docu-
ment list Dinit of 1000 documents for q : document d is scored by Sim(q, d) . We then (re-)
rank Dinit using an LTR method to obtain DLTR ; init-LTR denotes this ranking. Since some 
of the datasets used for evaluation do not have hyperlink and hypertext information, we 
only use highly effective content-based features. Specifically, the first three features in the 
document-query feature vector �(d,q) are those of the sequential dependence model (SDM) 
from the Markov Random Field (MRF) framework (Metzler and Croft 2005): unigrams, 
ordered bigrams and unordered bigrams (biterms). SDM is a state-of-the-art term-prox-
imity model. The next three features are the most effective document relevance priors 

(2)Sim(x, y)
def
= exp(−CE(�MLE

x
|| �Dir

y
));

4  Unless otherwise stated, we used the jforests implementation of LambdaMART: https​://code.googl​
e.com/p/jfore​sts/. In Sect.  5.1.7 we also present the performance results of our best performing method 
when using the LightGBM implementation of LambdaMART (https​://githu​b.com/micro​soft/Light​GBM).
5  https​://www.cs.corne​ll.edu/peopl​e/tj/svm_light​/svm_rank.html.

3  www.lemur​proje​ct.org.

https://code.google.com/p/jforests/
https://code.google.com/p/jforests/
https://github.com/microsoft/LightGBM
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://www.lemurproject.org


Information Retrieval Journal	

1 3

reported in (Bendersky et al. 2011): (1) SW1 and (2) SW2 are the fraction of terms in d 
that are stopwords on the INQUERY list, and the fraction of stopwords on the INQUERY 
list that appear in d respectively, and (3) the entropy, Ent, of the term distribution in d . 
High presence of stopwords, and high entropy, presumably attests to rich use of language 
and therefore to content breadth (Bendersky et  al. 2011). In Sect.  5.1.8 we also present 
experimental results when using the MSLR6 features used in the LETOR datasets.

The set of all passages in documents in DLTR is ranked to yield G(DLTR) . The same LTR 
method used to produce DLTR is used to produce G(DLTR) with the passage-based features 
described in Sect.  4.2. Then, DLTR is re-ranked using the document retrieval methods 
from Sect. 3 that utilize G(DLTR) . We use MAP and p@10 to evaluate document retrieval 
performance.

Baselines Recall that DLTR was attained by re-ranking Dinit using an LTR approach; i.e., 
the set of documents in these two lists is the same. All the baselines we describe and our 
passage-based document retrieval methods from Sect. 3 are used to rank this document set.

The initial language-model-based ranking of Dinit , denoted LM, is the first baseline. The 
second is the initial LTR-based ranking of DLTR , init-LTR. MRF’s SDM with its three fea-
tures (Metzler and Croft 2005) also serves as a reference comparison. SDM is a special 
case of the LTR method used to induce DLTR where document relevance priors are not 
used.

Another reference comparison is DocPsg (Bendersky and Kurland 2010) where docu-
ment d is scored with �Sim(q, d) + (1 − �)maxg∈d Sim(q, g) ; the value of � is negatively 
correlated with d ’s length which serves as a document homogeneity measure (Bendersky 
and Kurland 2010). DocPsg is an effective representative of the approach of interpolat-
ing document-query and passage-query similarity estimates (Callan 1994; Wilkinson 1994; 
Bendersky and Kurland 2010).

Additional baseline is the relevance model RM3 (Abdul-Jaleel et al. 2004). RM3 is a 
highly effective pseudo-feedback-based query expansion approach. We use RM3 to re-rank 
Dinit . It was recently shown—via a system-to-system comparison—that RM3 can outper-
form advanced neural-network-based document retrieval approaches (Lin 2018).

Finally, we also use as a reference comparison Okapi BM25 (Robertson et  al. 1995). 
Okapi was shown to substantially outperform standard neural network architectures 
over ROBUST and ClueWeb when using only the queries in these datasets for training 
(Dehghani et al. 2017), as we do here for the proposed feature-based LTR methods.

4.2 � Features for learning to rank passages

All our passage-based document ranking approaches (except for JPDm) utilize a ranking 
of the documents’ passages; i.e., the ranked list G(DLTR) . We now turn to describe the fea-
tures used for learning a passage ranker. Some of these are novel to this study. The features 
are estimates of passage g ’s relevance to the query q . Let dg denote g ’s ambient document 
which we assume is part of a document set Sdoc retrieved for q . Spsg denotes the set of pas-
sages of documents in Sdoc . If Sdoc is the set of documents in DLTR , the list we aim to re-
rank, then Spsg is the set of passages in G(DLTR).

The PsgQuerySim feature is the (normalized) passage-query similarity: Sim(q,g)
∑

g�∈Spsg
Sim(q,g�)

 . 

Since passages are relatively short, the ambient document can provide context in 

6  www.resea​rch.micro​soft.com/en-us/proje​cts/mslr.

http://www.research.microsoft.com/en-us/projects/mslr
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estimating query similarities (cf. Murdock (2006)): DocQuerySim is Sim(q,dg)∑
d�∈Sdoc

Sim(q,d�)
 . Addi-

tional document-based features are the maximum, average, and standard deviation of 
PsgQuerySim for g� ∈ dg : MaxPDSim, AvgPDSim and StdPDSim, respectively. The 
longer g is with respect to dg , the less reliance on document-based query-similarity infor-
mation is called for (Bendersky and Kurland 2010). Therefore, the ratio between g ’s and 
dg ’s lengths serves as a query independent feature: LengthRatio.

Passages (if exist) that precede ( gpre ) and follow ( gfollow ) g in dg provide focused context 
for g (Fernández et  al. 2011). Hence, we use PsgQuerySimPre and PsgQuerySimFol-
low: PsgQuerySim for gpre and gfollow , respectively. If g is the first or the last passage in 
the document, we use g ’s PsgQuerySim for PsgQuerySimPre and PsgQuerySimFollow, 
respectively.

The next features—the use of which for passage retrieval is novel to this study—are 
query-independent passage relevance priors. These are adopted from work on document 
relevance priors in Web search (Bendersky et al. 2011). Specifically, we use the entropy 
(Ent) and stopwords (SW1, SW2) features described above, but now for passages rather 
than documents.

The passage independent feature QueryLength is the number of unique terms in the 
query. This feature can potentially help to improve the performance of non-linear rankers 
(cf., Macdonald et al. (2012)).

The next features are adopted from work on selecting sentences for results’ snippets 
(Metzler and Kanungo 2008). These were also used to retrieve sentences (passages) for 
questions (Chen et al. 2015; Yang et al. 2016). ExactMatch is true if q is a substring of g 
and false otherwise. TermOverlap and SynonymsOverlap are the fraction of query terms 
and their synonyms (determined using Wordnet) in g . PsgLength is the number of terms 
in g after removing stopwords, and PsgLocation is g ’s position (in terms of passages) in dg 
over the number of dg ’s passages.

We also compare g with q using the following three semantic-similarity measures uti-
lized for sentence-answer retrieval (Yang et al. 2016). (The first two were also used in Chen 
et al. 2015.) The ESA similarity (Gabrilovich and Markovitch 2007) is computed by using, 
separately, q and the 20 terms in g with the highest TF.IDF values for query likelihood 
retrieval over the INEX Wikipedia collection. The cosine measure is used to compare the 
lists of min-max normalized retrieval scores of the top-100 documents.

W2V is the average cosine similarity between any query-term Word2Vec vector and any 
passage-term Word2Vec vector. We used the 300 dimensional newswire-based Word2Vec 
vectors from https​://code.googl​e.com/p/word2​vec/.

Entity is the Jaccard coefficient between the set-based entity representations of q and g . 
Wikipedia entities (i.e., titles) marked with a confidence level ≥ 0.1 by TagMe (Ferragina 
and Scaiella 2012) were used.

4.2.1 � Evaluating passage retrieval

Most of our passage-based document ranking methods rely on the ranking of document 
passages. Hence, we also evaluate the effectiveness of the learned passage ranker using 
the INEX and AQUAINT datasets—this is a focused (passage) retrieval task. For INEX, 
the set Sinit

psg
 , of all passages of documents in the language-model-based initially retrieved 

document list Dinit , is ranked; the top-1500 passages are evaluated using MAiP and iP[x]: 
precision at recall level x ∈ {.01, .1} (Geva et al. 2010; Arvola et al. 2011). These evalua-
tion measures were devised for the focused retrieval task where the percentage of relevant 

https://code.google.com/p/word2vec/
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information in a passage is accounted for. For AQUAINT, following the novelty track in 
2013 (Soboroff and Harman 2003), we set Dinit to be the provided set of relevant docu-
ments, and Sinit

psg
 is the set of all sentences in these documents which are ranked using our 

passage ranker. The top 1500 ranked sentences are evaluated using MAP and p@10. (The 
tracks provided sentence-level binary relevance judgments.)

We use the following baselines for passage ranking. The first method, QSF (“query-
similarity fusion”) (Callan 1994; Carmel et  al. 2013), scores g by 
(1 − �)

Sim(q,g)
∑

g�∈Sinitpsg
Sim(q,g�)

+ �
Sim(q,dg)∑

d�∈Dinit
Sim(q,d�)

 ; � is a free parameter. The two components of this 

interpolation are among the features used above for learning a passage ranker.
A tf.idf-based positional model was used for passage retrieval (Carmel et al. 2013). We 

use a language-model-based positional approach (Lv and Zhai 2009), PLM, with a Gauss-
ian kernel, as other methods also utilize language models: g is scored by 
�

Sim(q,imax(g))∑
g�∈Sinitpsg

Sim(q,imax(g
�))

+ �
Sim(q,g)

∑
g�∈Sinitpsg

Sim(q,g�)
+ (1 − � − �)

Sim(q,dg)∑
d�∈Dinit

Sim(q,d�)
 ; imax(g) is the position in 

g whose Dirichlet induced language model yields the highest query similarity among all 
positions i in g; � and � are free parameters. Using PLM as a feature in our passage ranking 
approach showed no merit.

We adapt the owpc method (Buffoni et  al. 2010), originally used to rank structured 
XML elements, as an additional baseline. For compliance with our setting, all features 
except for those which rely on XML structure are used in the two LTR methods used for 
all experiments. Most features rely on the query-similarity of the passage and its ambi-
ent document; most of the features described above, which we use for learning a passage 
ranker, were not utilized.

The state-of-the-art LTR-based baseline, MKS, utilizes all the features proposed in 
Yang et al. (2016) for retrieving answer sentences to non-factoid questions. Our passage 
ranker utilizes some of these features.

The LTR-based approaches, owpc, MKS and our methods, are used to re-rank the top 
1500 passages retrieved by QSF which is considered an effective method. Applying LTR 
methods on an initially retrieved list is common practice (Liu 2009); specifically, the list 
size, for document retrieval, is often the same as that of the number of documents to be 
retrieved (e.g., 1000); hence, LTR methods often operate as re-ranking approaches. Simi-
larly, the 1500 threshold used here for passage retrieval corresponds to the standard pas-
sage list size used in the focused retrieval track of INEX (Geva et al. 2010; Arvola et al. 
2011).

4.3 � Additional experimental details

As already noted, we use the INEX dataset to train a passage ranker with the features 
described in Sect. 4.2. The ranker is also used for passage-based document retrieval over 
the TREC corpora which lack focused (passage) relevance judgments. To learn a ranker, 
all passages of documents in the initial language-model-based document list retrieved from 
INEX, Dinit , are ranked using the QSF method described in Sect. 4.2.1; thus, Dinit serves 
for the set Sdoc in Sect. 4.2. The top 1500 passages serve for training. We explored a few 
binary/graded passage relevance-grade definitions for learning a passage ranker. These use 
the fraction of relevant characters in a passage, denoted RFrac . A bucket-based approach 
which produces five relevance grades resulted in effective performance of our passage 
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ranker and the owpc and MKS baselines (see Sect. 4.2.1 for details): 0: RFrac < .10 ; (1) 
.10 ≤ RFrac < .25 ; (2) .25 ≤ RFrac < .50 ; (3) .50 ≤ RFrac < .75 ; (4) .75 ≤ RFrac.

To learn a passage ranking function for the sentence retrieval (ranking) task over 
AQUAINT, we use the sentences’ binary relevance judgments as relevance grades.

For the JPDs passage-based document retrieval approach, the DocQuerySim passage 
feature is not used, as it is the unigram feature of SDM that is used as a document-based 
feature. For the JPDm-avg and JPDm-max passage-based document retrieval meth-
ods, we do not use the passage-query similarity feature PsgQuerySim (see Sect.  4.2) in 
aggg∈d(�(g,q)) since aggregating this feature value across the passages in the document 
amounts to the AvgPDSim and MaxPDSim features, respectively, which are already used 
in �(g,q).

We used leave-one-out cross validation over queries for training and testing; i.e., each 
query was used once for test wherein all other queries were used for training. For the LTR 
methods we randomly split the train set to train ( 80% ) and validation ( 20%);7 the latter was 
used to set the hyper parameters of the LTR methods. For consistency, we use the same 
train set to set the free-parameter values of the non-LTR baselines (i.e., the validation set is 
not used for these methods). MAP and MAiP served as the optimization criteria for values 
of (hyper-) parameters in document and passage retrieval, respectively. We min-max nor-
malized the feature values used in the learning-to-rank methods on a per-query basis.

The Dirichlet smoothing parameter was set to 1000 (Zhai and Lafferty 2001) for the 
initial language-model-based document retrieval, and to values in {500, 1500, 2500} in all 
other cases unless otherwise specified. The three parameters of MRF ’s SDM are set to 
values in {0, 0.1,… , 1} . The value of � in QSF is in {0.1, 0.2,… , 0.9} . RankSVM ’s regu-
larization parameter is set to {0.0001, 0.01, 0.1} ; all other hyper parameters of RankSVM, 
and those of LambdaMART, are set to default values of the implementations.

For PLM, the value of the steepness parameter of the Gaussian kernel is in 
{50, 100,… , 300} ; � and � were set to values in {0, 0.2,… , 1} (Lv and Zhai 2009). � (in 
the RRF and FPD methods from Sect. 3) and � (in the RRF, SMPD and FPD methods from 
Sect. 3) are in {0, 0.1,… , 1} and {0, 30, 60, 90, 100} , respectively.

The relevance model RM3 is constructed using unsmoothed maximum likelihood esti-
mates induced from the documents most highly ranked in Dinit (Raiber and Kurland 2013).8 
We set the number of documents from which RM3 is constructed, the number of terms and 
the interpolation parameter that controls the weight of the original query model to values in 
{50, 100} , {10, 25, 50, 100} and {0, 0.1,… , 1} , respectively.

For Okapi BM25, the values of the free parameters, k1 and b, are set to values in 
{0.1, 0.2,… , 4} and {0.1, 0.15,… , 1} , respectively.

5 � Experimental results

In Sect. 5.1 we analyze the performance of our passage-based document retrieval methods 
described in Sect. 3. As these methods rely on passage ranking, in Sect. 5.2 we analyze the 
performance of our learning-to-rank-based passage retrieval method.

8  Not smoothing these language models was shown to yield highly effective RM3 performance (Raiber and 
Kurland 2013).

7  The only exception was that the passage LTR method applied on TREC corpora was learned using all 
queries in the INEX dataset.
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5.1 � Passage‑based document retrieval

5.1.1 � Main result

Table 3 presents our main result. We see that in all relevant comparisons (5 datasets × 2 
evaluation measures), JPDs, which is shown below to be our best performing approach, 
substantially outperforms all baselines: LM (unigram language-model-based retrieval), 
DocPsg (a representative passage-based document retrieval approach), SDM (a state-
of-the-art term proximity method), RM3 (a highly effective query expansion approach), 
BM25 (Okapi BM25) and init-LTR (a learning-to-rank approach that utilizes document-
query features). Most improvements are statistically significant. (We applied Bonferroni 
correction for multiple comparisons.) Refer back to Sect.  4.1 for more details about the 
baselines.

Recall that JPDs learns a document ranker by utilizing the document-query features 
used to induce init-LTR and the passage-query features of the document’s passage most 
highly ranked in response to the query. Its clear superiority with respect to the init-LTR 
methods attest to the merits of the way JPDs leverages passage-based information.

Given the performance superiority in most relevant comparisons of init-SVM and 
init-LMart to the other baselines, below we use them as reference comparisons. We note 
that their effectiveness attests to the effectiveness of the document features we use.9 (See 
Sect. 4.1 for details regarding the features.)

Table 3   Main result

Comparison between document retrieval baselines and JPDs-LTR which is shown below to be our best per-
forming method. ‘ l  ’, ‘ d ’, ‘ s ’, ‘ r ’, ‘ b ’ and ‘ i  ’ mark statistically significant differences with LM, DocPsg, 
SDM, RM3, BM25 and init-LTR respectively. Comparisons between LTR-based methods are performed 
between two methods utilizing the same LTR approach
Boldface: best result per column

ROBUST WT10G GOV2 ClueWeb INEX

MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10

LM .254 .433 .195 .290 .292 .534 .187 .339 .367 .554
DocPsg .254 .424 .209 .292 .298 .523 .168 .306 .368 .538
SDM .261 .440 .202 .293 .304 .576 .192 .338 .385 .568
RM3 .281 .443 .196 .303 .325 .571 .198 .361 .390 .568
BM25 .255 .443 .201 .295 .294 .574 .205 .363 .371 .562
init-SVM .261 .439 .213 .334 .336 .643 .222 .406 .392 .577
init-LMart .245 .427 .198 .311 .326 .651 .224 .394 .378 .584
JPDs-SVM .���

lds
bi

.���
lds
rbi

.���
lds
rbi

.���
lds
rbi

.���
lds
rbi

.���
lds
rb

.���
lds
rbi

.���
lds
rbi

.���
lds
rbi

.589ld

JPDs-LMart .���
lds
bi

.471
lds
bi

.229
l
i

.378
lds
rbi

.345
lds
bi

.655
lds
rb

.234
lds
rb

.423
lds
rb

.412
lds
rbi .���

ld

9  The finding that init-LMart underperforms init-SVM can be attributed to the fact that LMart is a non-
linear ranker while SVM is, and the number of queries used for training is not very large.
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Since our methods utilize init-SVM and init-LMart (i.e., the initial list DLTR or features 
used to induce it), and using each of the two entails a different experimental setting, we 
compare X-SVM and X-LMart methods separately.

5.1.2 � Comparing all our methods

Table 4 presents the performance comparison of all our proposed passage-based document 
retrieval methods from Sect. 3. The init-LTR methods serve for reference comparison.

We see in Table 4 that all the proposed methods outperform the init-LTR baselines—
often statistically significantly—in the vast majority of relevant comparisons and are 
never outperformed in a statistically significant manner by a baseline.

JPDs is the most effective approach among those we proposed: its block in the table 
has the highest number of boldfaced numbers, it outperforms any other approach in 
most relevance comparisons, and it is never statistically significantly outperformed by 
other approaches while the reverse often holds. These findings attest to the merits of 
using the passage-query features of the document’s passage most highly ranked together 
with the document-query features to learn a document ranker.

The JPDm-max approach is the second-best performing. This finding is not entirely 
surprising: JPDs, which is our best performing method, uses the features of the docu-
ment’s passage most highly ranked while JPDm-max uses per each passage-based fea-
ture the maximum value over the document’s passages. As could be expected, both 
JPDm-max and JPDm-avg outperform JPDm-min. That is, using the average or the 

Table 4   Comparison of all our passage-based document retrieval methods

‘i  ’ and ‘ j ’ mark statistically significant differences with init-LTR and JPDs-LTR, respectively. Compari-
sons between LTR-based methods are performed between two methods utilizing the same LTR approach
Boldface: best result per column

ROBUST WT10G GOV2 ClueWeb INEX

MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10

init-SVM .261 .439 .213 .334 .336 .643 .222 .406 .392 .577
init-LMart .245 .427 .198 .311 .326 .651 .224 .394 .378 .584
JPDs-SVM .290 .��� .235 .��� .��� .656 .��� .��� .417 .589
JPDs-LMart .290 .471 .229 .378 .345 .655 .234 .423 .412 .593
RRF-SVM .275ij .462ij .231i .376i .346i .639 .234ij .425ij .408ij .601i

RRF-LMart .281ij .462i .230i .367i .339ij .638 .232i .427i .410i .603
SMPD-SVM .271ij .455ij .223ij .363i .344ij .647 .233ij .418j .401ij .598i

SMPD-LMart .280ij .460i .���� .370i .341i .641 .239i .433i .412i .600
JPDm-avg-SVM .285ij .465ij .228i .363i .343j .639 .244i .434ij .415i .598i

JPDm-avg-LMart .288i .471i .223i .355ij .342i .��� .237i .422i .417i .595
JPDm-max-SVM .���

i
.476i .235i .374i .���

i .643 .242i .429j .���� .601i

JPDm-max-LMart .289i .468i .228i .363i .349i .654 .230 .416 .416i .602
JPDm-min-SVM .270ij .451j .233i .342j .334j .630j .236i .430ij .404ij .583
JPDm-min-LMart .271ij .454ij .220i .338j .337ij .640 .230 .403j .394ij .578
FPD-SVM .288ij .474i .228ij .372i .348i .643 .238ij .434ij .411ij .588
FPD-LMart .291i .468i .228i .362i .349i .655 .236i .423i .414i .����
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maximum of a feature value across the document’s passages yields better performance 
than using the minimal value.

Table 4 also shows that RRF outperforms SMPD in most relevant comparisons when 
using SVM and the reverse holds when using LMart. However, only the MAP differ-
ences between RRF-SVM and SMPD-SVM for ROBUST and INEX are statistically 
significant. We thus conclude that the most important passage-rank-based information 
is the rank of a document’s most highly ranked passage. (Recall that SMPD uses addi-
tional statistics about the ranking of passages of a document.) We attribute these find-
ings to the fact that a document can be deemed relevant even if it contains only a single 
short relevant passage.

Another observation that we make based on Table 4 is that FPD and JPDs outperform 
RRF in most relevant comparisons; i.e., using the query-passage features of the passage 
most highly ranked of a document is more effective than using its rank. Using these fea-
tures together with document features (JPDs) is more effective than using them separately 
(FPD) to induce document ranking.

5.1.3 � Further analysis of JPDs

We saw above that JPDs is the most effective passage-based document retrieval approach 
among those we proposed. JPDs uses together the document-query features and the pas-
sage-query features of the document’s most highly ranked passage so as to learn a docu-
ment ranking function. In Table  5 we contrast the performance of JPDs with that of its 
variants that use the passage-query features of the document’s second (JPDs-second), third 
(JPDs-third) and lowest (JPDs-lowest) ranked passages in G(DLTR).

Table 5   Comparing variants of JPDs

‘ j ’ marks statistically significant differences with JPDs-LTR
Boldface: the best result in a column for each LTR method (SVM or LMart)

ROBUST WT10G GOV2 ClueWeb INEX

MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10

JPDs-SVM .��� .��� .235 .��� .��� .��� .��� .��� .��� .589
JPDs-second-SVM .277j .464j .��� .363 .341j .646 .238j .430j .414 .594
JPDs-third-SVM .273j .455j .232 .363 .338j .633j .238j .434j .412 .���

JPDs-lowest-SVM .271j .452j .231 .347j .335j .629j .226j .410j .402j .577
JPDs-LMart .��� .��� .��� .��� .��� .��� .234 .423 .��� .���

JPDs-second-LMart .280j .458 .226 .358 .341 .��� .��� .��� .410 .588
JPDs-third-LMart .273j .455j .218 .361 .341 .650 .235 .422 .401j .587
JPDs-lowest-LMart .270j .448j .219 .336j .337j .649 .232 .411 .400j .581
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Table 5 shows that the original version, JPDs, outperforms in most relevant compari-
sons its variants (JPDs-second, JPDs-third and JPDs-lowest). More generally, we see that 
for almost all datasets, the lower the document’s passage, whose passage-query features are 
used, is ranked, the lower the retrieval performance of the JPDs approach that uses these 
features.10 These findings attest to the merits of using the features of the document’s most 
highly ranked passage. They also show the benefit of using information induced from the 
relative ranking of the document’s passages with respect to the query.

5.1.4 � Utilizing two passages

Our JPDs method utilizes the features of the document’s most highly ranked passage in 
addition to the document’s features. We now consider a variant of JPDs, denoted JPD-2, 
which uses in addition the features of the document’s passage which is the second ranked.11 
The feature vectors of the two passages are concatenated with that of the document for 
learning a document ranker. Table 6 presents the results.

We see in Table 6 that using the two passages (JPD-2-LTR) yields performance that is 
very similar in most relevant comparisons to that of using a single passage (JPDs-LTR). In 
only a single case, the performance difference is statistically significant.

5.1.5 � The effect of the passage ranker

Our passage-based document retrieval approaches (except for JPDm) utilize informa-
tion induced from the ranking of passages in the initially retrieved document list, Dinit . 
In Table 7 we compare the performance of the approaches when using two different pas-
sage ranking methods. The first is the QSF method described in Sect.  4.2.1 which inte-
grates the passage-query similarity value with the query-similarity value of the passage’s 

Table 6   Comparing JPDs with JPD-2 where the features of the document’s two most highly ranked pas-
sages are used in addition to those of the document

‘ j ’ marks statistically significant differences with JPDs-LTR
Boldface: the best result in a column for each LTR method (SVM or LMart)

ROBUST WT10G GOV2 ClueWeb INEX

MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10

JPDs-SVM .290 .��� .��� .��� .350 .��� .246 .��� .417 .589
JPD-2-SVM .��� .473 .��� .373 .��� .655 .���

j .��� .��� .���

JPDs-LMart .290 .471 .229 .��� .345 .��� .234 .423 .412 .593
JPD-2-LMart .��� .��� .��� .375 .��� .649 .��� .��� .��� .���

10  We note that the use of the lowest ranked passage did not result in substantial performance decrease due 
to the length of passages used here: 300; that is, such passages can incorporate a descent amount of infor-
mation from the entire document, especially in cases of relatively short documents.
11  To avoid having the same features used for the two passages, the following features were removed from 
the feature vector of the second ranked passage: DocQuerySim, MaxPDSim, AvgPDSim, StdPDSim and 
QueryLength.
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ambient document. The second passage ranking method, PsgLTR, was used insofar: SVM 
or LMart applied with our proposed passage-based features from Sect. 4.2.12 In Sect. 5.2 
we show that the passage-ranking effectiveness of PsgLTR is substantially better than that 
of QSF.

The message rising from Table 7 is clear: our passage-based document retrieval meth-
ods post better performance when using the LTR-based passage ranker than when using the 
QSF method to rank passages. While most improvements are statistically significant, those 
for JPDs are not. This finding attests to the robustness of JPDs with respect to the passage 
ranker used.

5.1.6 � Feature analysis for document retrieval

We now present feature analysis for our best performing approach, JPDs. We start by ana-
lyzing JPDs-SVM which outperforms JPDs-LMart (see Table 3).

First, we average, per dataset, the weights assigned to features in JPDs-SVM using the 
different training folds. (Recall that we use leave-one-out cross validation.) Then, the fea-
tures are ordered in descending order of these averages. Each feature is assigned a score 
which is the reciprocal of its rank position in the ordered list. Finally, features are ordered 

Table 7   The effect on document ranking effectiveness of the passage ranker: LTR-based (PsgLTR) versus 
integrating the passage-query similarity with the query-similarity of the passage’s ambient document (QSF)

*marks statistically significant differences between PsgLTR and QSF
Boldface: the best result for evaluation measure in a block

ROBUST WT10G GOV2 ClueWeb INEX

MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10

RRF-SVM PsgLTR .���
∗

.���
∗

.���
∗

.���
∗

.���
∗ .639 .���

∗
.���

∗
.���

∗
.���

∗

RRF-SVM QSF .261 .442 .215 .324 .336 .��� .223 .406 .390 .574
RRF-LMart PsgLTR .���

∗
.���

∗
.���

∗
.���

∗
.���

∗ .638 .���
∗

.���
∗

.���
∗

.���
∗

RRF-LMart QSF .257 .442 .204 .318 .326 .��� .224 .396 .382 .581
SMPD-SVM PsgLTR .���

∗
.���

∗
.���

∗
.���

∗
.��� .��� .��� .��� .���

∗
.���

∗

SMPD-SVM QSF .259 .439 .213 .337 .337 .642 .227 .409 .386 .564
SMPD-LMart PsgLTR .���

∗
.���

∗
.���

∗
.���

∗
.��� .641 .���

∗
.���

∗
.���

∗
.���

SMPD-LMart QSF .258 .442 .211 .327 .336 .��� .223 .407 .389 .579
JPDs-SVM PsgLTR .��� .��� .��� .��� .��� .��� .��� .��� .��� .589
JPDs-SVM QSF .288 .474 .233 .373 .347 .647 .245 .441 .414 .���

JPDs-LMart PsgLTR .��� .471 .229 .��� .��� .��� .��� .��� .��� .593
JPDs-LMart QSF .289 .��� .��� .365 .343 .641 .228 .407 .410 .���

FPD-SVM PsgLTR .��� .474 .228 .��� .���
∗

.��� .���
∗

.��� .���
∗ .588

FPD-SVM QSF .286 .��� .��� .365 .345 .632 .230 .422 .405 .���

FPD-LMart PsgLTR .��� .��� .��� .��� .���
∗

.���
∗

.��� .��� .��� .���

FPD-LMart QSF .287 .��� .225 .361 .344 .631 .233 .417 .411 .605

12  We do not present the comparison for the JPDm approach as it is independent of the passage ranking.
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by averaging their scores across datasets. The top 10 features13 according to this analysis 
are (p and d indicate that the feature is of the passage or the document, respectively): SDM 
unigrams (d), ESA (p), Entity (p), Ent (d), AvgPDSim (p), MaxPDSim (p), SW2 (d), SDM 
biterms (d), SynonymsOverlap (p), W2V (p). Thus, both document-based and passage-
based features are among the top-5 and top-10. This finding attests to the merits of using 
both types of features to learn a document ranking function.

We also performed ablation tests for JPDs where we removed one feature at a time. 
Actual numbers are omitted as they convey no additional insight. We order the features 
in descending order of the number of cases where their removal resulted in statistically 
significant performance drop. A case is defined by a dataset and evaluation measure. (We 
include JPDs-SVM and JPDs-LMart together in this analysis.) We mark the features with 
(d/p,x): whether the feature is document-based or passage-based (d/p) and the number of 
cases (x) its removal caused statistically significant performance drop. The ordered list of 
features is: ESA (p,15), SDM unigrams (d,4), SDM biterms (d,2), SW1 (d,2), Ent (d,1), 
SW2 (d,1), SDM bigrams (d,1), MaxPDSim (p,1), LengthRatio (p,1), SynonymsOver-
lap (p,1), pLocation (p,1), Entity (p,1). Thus, as was the case for the SVM-based feature 
weight analysis from above, ESA which is a passage feature and SDM unigrams which is a 
document feature are the most important. More generally, the list contains both document 
and passage features. We note that while the removal of each of the document features 
resulted in at least one case of statistically significant drop, for quite a few passage features 
this was not the case; i.e., there is redundancy between the passage features.

We next turn to present feature analysis for the SMPD approach.14 SMPD uses the same 
document features as JPDs, but different passage-based features: mainly those which quan-
tify the rank positions of the document’s passages in the passage ranking. The results of 

Table 8   Varying the LTR method used in JPDs and in init-LTR

‘i  ’ marks statistically significant difference with init-LTR
Boldface: the best result in a column for each LTR method (SVM, LMart, MART, CAscent or GBM)

ROBUST WT10G GOV2 ClueWeb INEX

MAP p@10 MAP p@10 MAP p@10 MAP p@10 MAP p@10

init-SVM .261 .439 .213 .334 .336 .643 .222 .406 .392 .577
JPDs-SVM .���

i
.���

i
.���

i
.���

i
.���

i .��� .���
i

.���
i

.���
i .���

init-LMart .245 .427 .198 .311 .326 .651 .224 .394 .378 .584
JPDs-LMart .���

i
.���

i
.���

i
.���

i
.���

i .��� .���
i

.���
i

.���
i .���

init-MART​ .258 .439 .203 .305 .332 .640 .216 .403 .381 .565
JPDs-MART​ .���

i
.���

i .��� .���
i

.���
i .��� .��� .��� .���

i .���

init-CAscent .257 .443 .211 .324 .329 .��� .212 .406 .377 .586
JPDs-CAscent .���

i
.���

i
.���

i
.���

i
.���

i .647 .��� .��� .��� .���

init-GBM .259 .442 .199 .316 .327 .629 .221 .393 .380 .563
JPDs-GBM .���

i
.���

i
.���

i
.���

i
.���

i
.���

i .��� .��� .���
i .���

14  In this analysis we set � , the free parameter of SMPD, to a value which is effective across the train folds.

13  JPDs-SVM uses 24 features and JPDs-LMart uses 25 features—the additional feature is the query length 
which is not useful for a linear ranker.
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an ablation test, as that performed above, are: max (p,5), SW2 (d,4), SDM unigrams (d,3), 
SDM biterms (d,2), avg (p,2), numPsg (p,2), Ent (d,1), SW1 (d,1), SDM bigrams (d,1), min 
(p,1), std (p,1), top50 (p,1). We observe again a mix of document and passage features. The 
max feature, which quantifies the rank position of the document’s most highly ranked pas-
sage, is more important than the min and avg features. This finding provides further sup-
port to the merits of using information about the highest ranked passage of the document.

5.1.7 � LTR methods

Heretofore, we applied our methods using two LTR approaches: RankSVM and Lamb-
daMART. In Table 8, we study the performance of our JPDs method with two additional 
LTR approaches: MART (Friedman 2001) and coordinate ascent (Metzler and Croft 
2007b). MART, known as gradient boosted regression trees, is a non-linear pairwise ranker 
which combines the outputs obtained by different regression trees. On the other hand, 
coordinate ascent (CAscent in short) is a linear listwise approach. We used the RankLib.15 
implementations of the MART and CAscent algorithms. In addition, we use the Light-
GBM.16 toolkit for an additional implementation of LambdaMART; this serves as a refer-
ence comparison to the LambdaMART model presented in Sect. 4 based on the jforests 
implementation. We refer to LightGBM’s LambdaMART model as GBM. CAscent and 
GBM were trained for NDCG@10.

Table 8 shows that the JPDs method improves over the initial LTR ranking in all rel-
evant comparisons (5 datasets × 2 evaluation measures × 5 LTR methods). Most of the 
improvements for SVM, LMart and GBM are statistically significant while some of the 
improvements for MART and CAscent are statistically significant.

We also see in Table 8 that in most relevant comparisons, using JPDs with SVM and 
LMart results in performance that transcends that of its implementations that use MART 
and CAscent. This finding can be attributed to some extent to the effectiveness of the pas-
sage ranking utilized by JPDs. The MAiP effectiveness of the passage ranking induced 
using MART and CAscent is lower than that attained by using SVM and LMart when using 
the INEX dataset for passage retrieval evaluation. Specifically, the MAiP performance of 
SVM, LMart, MART and CAscent is .267, .275, .250 and .259, respectively.

In comparing the performance of the two LambdaMART implementations—LMart 
(jforests) and GBM (LightGBM)—we observe the following in Table  8. init-GBM out-
performs init-LMart in 6 out of 10 relevant comparisons, but we found only the MAP 
difference for ROBUST to be statistically significant. The opposite holds for JPDs; i.e., 
using JPDs with LMart outperforms JPDs with GBM in most relevant comparisons, but we 
found only the MAP difference for INEX to be statistically significant. Although the MAiP 
of the passage ranker using the INEX dataset is almost the same for LMart (.275) and 
GBM (.276), the iP[.01]—the interpolated precision at 1% recall point—of LMart is higher 
than that of GBM; .644 and .632, respectively. Recall that the LTR approaches are used for 
both the passage ranker and the document ranker.

15  https​://sourc​eforg​e.net/p/lemur​/wiki/RankL​ib/
16  https​://githu​b.com/micro​soft/Light​GBM

https://sourceforge.net/p/lemur/wiki/RankLib/
https://github.com/microsoft/LightGBM
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5.1.8 � Using LETOR features

We have used the document features described in Sect.  4.1. This practice resulted in 
highly effective document ranking performance as exhibited by the init-LTR baselines 
as well as our methods. We now turn to explore the performance of our methods with a 
much larger set of document(-query) features. Specifically, we use the MSLR17 features 

Table 9   Using the MSLR 
(LETOR) document features in 
comparison to using the features 
used thusfar for the initial 
document ranking and in our 
JPDs method

‘i  ’ and ‘m’ mark statistically significant differences with init-LTR and 
init-MSLR-LTR, respectively
Boldface: the best result in a column, per block of either the original 
features (first block) or the MSLR features (second block), for each 
LTR method (SVM or LMart)

GOV2 ClueWeb

MAP p@10 MAP p@10

init-SVM .336 .643 .222 .406
init-LMart .326 .651 .224 .394
JPDs-SVM .���

i .��� .���
i

.���
i

JPDs-LMart .���
i .��� .���

i
.���

i

init-MSLR-SVM .323 .595 .251 .437
init-MSLR-LMart .315 .599 .241 .428
JPDs-MSLR-SVM .���

m
.���

m
.���

m
.���

m

JPDs-MSLR-LMart .���
m

.���
m

.��� .���

Table 10   Passage retrieval over INEX with passages of length 300, 150 and 50. LM is standard language-
model-based document retrieval (i.e., documents serve for passages)

Statistically significant differences with LM, QSF and PLM are marked with ‘ l  ’, ‘ f  ’ and ‘ m ’, respectively. 
‘ o ’ and ‘ k ’ mark a statistically significant difference between PsgLTR-X and owpc-X and between PsgLTR-
X and MKS-X, respectively
Boldface: the best result in a column

INEX

Psg300 Psg150 Psg50

MAiP iP[.01] iP[.1] MAiP iP[.01] iP[.1] MAiP iP[.01] iP[.1]

LM .256 .523 .449 .256 .523 .449 .256 .523 .449
QSF .248 .577 .453 .234 .575 .455 .209 .581 .449
PLM .253 .586 .472 .240 .596 .471 .��� .605 .���

owpc-SVM .242 .577 .440 .229 .569 .438 .202 .570 .431
owpc-LMart .255 .578 .460 .240 .566 .450 .208 .577 .443
MKS-SVM .247 .593 .468 .235 .602 .459 .199 .626 .457
MKS-LMart .262 .620 .479 .241 .629 .479 .200 .644 .459
PsgLTR-SVM .267ok .637

lf
o

.487o .���
� .���

���

��

.492o .213l .����
�

.467

PsgLTR-LMart .�����
�

.������
�

.��� .��� .650
lf
o

.���
�

.209l .634l .454

17  www.resea​rch.micro​soft.com/en-us/proje​cts/mslr.

http://www.research.microsoft.com/en-us/projects/mslr
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from the LETOR datasets for retrieval over the GOV2 and ClueWeb collections with the 
queries specified in Table 2. We used all MSLR features except for the Outlink num-
ber, SiteRank, QualityScore, QualityScore2, Query-url click count, url click count, and 
url dwell time. In addition to the MSLR features, we also use here the highly effective 
query-independent document quality measures used above: the fraction of terms in the 
document that are stopwords, the fraction of stopwords that appear in the document, 
and the entropy of the term distribution in the document. The stopword list used for the 
two stopword features is composed of the collection’s 100 most frequent alphanumeric 
terms (Ntoulas et  al. 2006; Raifer et  al. 2017). For ClueWeb we also used the spam 
score assigned to a document by the Waterloo spam classifier and the PageRank score. 
All together, we used, at the document level, 149 features for GOV2 and 151 features 
for ClueWeb.

The results are presented in Table 9. We first see that in terms of the initial ranking, the 
MSLR features are more effective than those we used above for ClueWeb, but the reverse 
holds for GOV2. (This could potentially be attributed to the fact that for GOV2 there are 
fewer queries than for ClueWeb.) We further see in Table 9 that our JPDs method is also 
effective with the MSLR features. It always outperforms the initial ranking; in most rel-
evant comparisons, the improvements are statistically significant.

5.2 � Passage retrieval

Heretofore, we have focused on the document retrieval task. Our passage-based docu-
ment retrieval methods utilize a ranking of passages induced using our proposed passage 
retrieval approach. (See Sect. 4.2 for details.) We now turn to compare the performance of 
our passage ranker with that of the passage retrieval baselines described in Sect. 4.2.1.

Table  10 presents the performance numbers of the passage retrieval methods for the 
INEX collection. We see that our LTR methods, PsgLTR-SVM and PsgLTR-LMart, 
outperform all other passage retrieval methods in most relevant comparisons (3 pas-
sage lengths × 3 evaluation measures) with many of the improvements being statistically 

Table 11   Sentence retrieval over 
AQUAINT

Statistically significant differences with QSF and PLM are marked 
with ‘ f  ’ and ‘ m ’, respectively. ‘ o ’ and ‘ k ’ mark a statistically signifi-
cant difference between PsgLTR-X and owpc-X and between PsgLTR-
X and MKS-X, respectively
Boldface: the best result in a column

AQUAINT

MAP p@10

QSF .471 .624
PLM .518 .669
owpc-SVM .579 .701
owpc-LMart .589 .���

MKS-SVM .569 .664
MKS-LMart .585 .701
PsgLTR-SVM .602

fm

ok
.713

f

k

PsgLTR-LMart .���
��

��
.710f
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significant. We note that the MKS baseline (Yang et al. 2016) was shown to yield state-of-
the-art passage retrieval performance.

Table 11 presents the effectiveness of our passage retrieval approach, PsgLTR, in rank-
ing sentences in the AQUAINT collection. We see that PsgLTR-SVM and PsgLTR–LMart 
statistically significantly outperform all other passage retrieval methods in terms of MAP. 
In the single case where our methods are outperformed by another method (owpc-LMart) 
in terms of p@10, the performance differences are not statistically significant.

The findings presented above for focused (passage) retrieval over INEX, and sentence 
retrieval over AQUAINT, attest to the fact that our passage ranker posts state-of-the-art 
passage retrieval performance.

5.2.1 � Feature analysis for passage retrieval

We first use the SVM-based feature analysis, as was performed above for document 
retrieval, to analyze the relative importance of features used in our passage retrieval 
approach (PsgLTR-SVM). For INEX, we consider each of the three passage lengths as 
a different experimental setting. The top 10 features for INEX are: ESA, SW1, MaxPD-
Sim, Entity, StdPDSim, SW2, Ent, DocQuerySim, AvgPDSim and SynonymsOverlap. For 
AQUAINT, the top-10 features are: Ent, SW1, ESA, LengthRatio, TermOverlap, AvgP-
DSim, PsgQuerySimPre, SynonymsOverlap, PsgQuerySimFollow, PsgLength. Recall 
that using stopwords-based passage priors (SW1 and SW2) to rank passages is novel 
to this study. We see that SW1 is the second most important feature for both INEX and 
AQUAINT. Another observation is that, as expected, the relative ordering of passages in 
this analysis, and the set of features that are among the top-10, are not identical to those 
presented above when using the passage features for document retrieval.

In addition, we perform ablation tests for PsgLTR. When using passages of 300 terms 
for INEX, the features whose removal resulted in statistically significant performance drop 
of MAiP are: ESA, MaxPDSim, AvgPDSim, SW1. The features whose removal resulted 
in statistically significant performance drop of MAP for AQUAINT are: Ent, SW1, ESA, 
SW2. The features are ordered in both cases in a descending order of the performance 
drop. Given that the retrieval tasks over INEX (passage retrieval) and AQUAINT (sentence 
retrieval) are different, it is not surprising that the feature lists are a bit different. Yet, ESA 
and SW1 are in both cases among the most important features, which was also the case 
above in the SVM-based analysis.

6 � Discussion of empirical findings

The empirical analysis presented in Sect.  5 sheds light on the importance of different 
aspects of the proposed passage-based retrieval methods. These aspects were summarized 
in Table 1.

The superiority of JPDs to RRF provided support to the merits of using an LTR 
approach to integrate document and passage information with respect to fusing retrieval 
scores produced by document-based and passage-based document retrieval.

The superiority of RRF to SMPD, and the statistically indistinguishable performance 
of JPDs which uses a single passage and its variant that uses two passages (JPD-2; see 
Sect. 5.1.4), attest to the merits of using a single passage of the document to directly affect 
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its final retrieval score. Furthermore, selecting the document’s passage that is the most 
highly ranked to this end is superior to selecting another passage as demonstrated by the 
performance of JPDs with various passages. (See Sect. 5.1.3.)

Another important finding was that using passage features to learn a document ranking 
function is of much merit with respect to using only passages’ rank position information; 
e.g., FPD and JPDs outperform RRF and SMPD. Using passage features and document 
features together (JPDs) is superior to using them separately (FPD) for learning a docu-
ment ranking function.

Given the above, it is not a surprise that JPDs was the best performing method among 
those proposed. It uses the features of the document’s passage most highly ranked, together 
with the document features, to learn a document ranking function.

It is also important to note a relative merit of the proposed feature-based methods with 
respect to neural-network-based methods. The proposed methods were trained using a 
small number of queries (and relevance judgments) and yet outperformed highly effective 
baselines. As already noted above, it was shown that training even relatively simple neural 
networks for document ranking using the query sets we use here results in performance 
that is inferior to that of Okapi BM25 (Dehghani et al. 2017). Our best performing meth-
ods substantially outperform not only Okapi BM25, but also relevance model #3 (RM3) 
(Abdul-Jaleel et al. 2004); RM3 was shown to outperform some advanced neural network 
architectures for document retrieval via a system-to-system comparison (Lin 2018).

7 � Conclusions and future work

Our focus in this work was on passage-based document retrieval: document ranking meth-
ods that utilize information induced from document passages. Previous work on passage-
based document retrieval has focused on methods that integrate passage-query and docu-
ment-query similarity values. Here, we addressed the challenge of utilizing richer sources 
of passage-based information for improving document retrieval effectiveness.

We presented a suite of learning-to-rank methods for document retrieval that use pas-
sage-based information. Most of the methods rely on ranking passages in response to the 
query using an effective approach, specifically, utilizing learning-to-rank. Some of the 
methods use information about the ranking of the passages of a document. Other methods 
use the passage-based features utilized for passage ranking and integrate them with doc-
ument-based features so as to learn a document ranking function. We described connec-
tions between our methods and past unsupervised approaches for passage-based document 
retrieval as well as approaches for ranking clusters of similar documents.

To learn a passage-ranking method, we used previously proposed features along with 
features which were not used before for learning passage ranking functions. These features 
are query-independent passage-relevance priors adopted from work on using document rel-
evance priors for Web search.

Empirical evaluation performed with a suite of datasets demonstrated the effectiveness 
of our methods. Our most effective method integrates document-based features with pas-
sage-based features of the document’s most highly ranked passage. In addition, our best 
performing method was shown to outperform the use of different sets of document-based 
features. Further exploration provided support to the merits of using an effective passage 
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ranking method. We also showed that our passage-ranking method yields state-of-the-art 
passage retrieval performance.

For future work we intend to integrate in our methods additional passage-based features; 
e.g., those induced from inter-passage similarities (cf., Sheetrit and Kurland (2019)). We 
also plan to explore how our methods can be used for, and with, pseudo-feedback-query 
expansion. A case in point, we can apply query expansion at the passage-level, document-
level, or both, so as to enrich the feature set used. Applying our methods with additional 
datasets (e.g., MS MARCO (Nguyen et al. 2016)) is also a future direction we intend to 
pursue.
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