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ABSTRACT
Reading a document can often trigger a need for additional informa-
tion. For example, a reader of a news article might be interested in
information about the persons and events mentioned in the article.
Accordingly, there is a line of work on recommending search-engine
queries given a document read by a user. Often, the recommended
queries are selected from a query log independently of each other,
and are presented to the user without any context. We address a
novel query recommendation task where the recommended queries
must be n-grams (sequences of consecutive terms) in the document.
Furthermore, inspired by work on using inter-document similar-
ities for document retrieval, we explore the merits of using inter
n-gram similarities for query recommendation. Specifically, we use
a supervised approach to learn an inter n-gram similarity measure
where the goal is that n-grams that are likely to serve as queries
will be deemed more similar to each other than to other n-grams.
We use the similarity measure in a wide variety of query recom-
mendation approaches which we devise as adaptations of ad hoc
document retrieval techniques. Empirical evaluation performed
using data gathered from Yahoo!’s search engine logs attests to the
effectiveness of the resultant recommendation methods.
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1 INTRODUCTION
Reading a document may incite one’s curiosity and trigger some
information needs. In the Web setting, seeking information that
satisfies these needs is often done by posting queries to a search
engine. Accordingly, there is a line of work on predicting which
queries a user reading a document might post [5, 9, 19, 24]. This
prediction is the basis for recommending queries to users reading
documents1. The recommended queries are in the vast majority of
cases those from a query log [5, 9, 19].

Here, we address a novel challenge: recommending n-grams in a
document a user is reading as search engine queries. The n-grams
are sequences of n consecutive terms in a document. The motiva-
tion for engaging in this task is three-fold. First, studies have shown
that a query submitted by users after reading a document is likely
to appear partially or fully in the document itself [19]. This finding
implies to the potential effectiveness of the document being read as
a source for recommended queries. The second motivation is the
convenience of user interfaces as that in Figure 1: the recommen-
dations are simply highlighted n-grams in the document; clicking
on these n-grams launches them as queries in a search engine. The
third motivation is the level of explainability provided by the inter-
face. The user can use the context surrounding the recommended
n-gram to decide whether it represents well her information need.

To address the novel query-recommendation challenge described
above, we present a novel approach that is inspired by work on
utilizing inter-document similarities for ad hoc document retrieval
(e.g., [21, 23, 28]). Instead of treating potential queries (n-grams)
independently of each other, as in past work, when estimating
whether they will be used by a user, we study the merits of utilizing
their relations. Essentially, our approach enriches the representation
of an n-gram by utilizing information induced from associated n-
grams in the same document. Since n-grams are short segments of
text, such enrichment can be of much merit as we show.

We devise a supervised inter n-gram similarity measure which
induces a similarity space where n-grams in the same document
that are used as queries are closer to each other than to those in
the document that are not used as queries. This is a novel manifes-
tation of the cluster hypothesis originally proposed for document
retrieval [17]2, which we apply to the query recommendation task.

1We use the term “query recommendation” rather than “query suggestion” to differen-
tiate the task we focus on from that of suggesting queries to users of search engines
who have already started their search session [2, 4, 12, 46].
2The cluster hypothesis states that “closely associated documents tend to be relevant
to the same requests” [17].
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Figure 1: Example of highlighted n-grams that are recom-
mended queries. A click on an n-gram launches it as a query
in a search engine.

Accordingly, we devise a cluster hypothesis test for the query rec-
ommendation task which allows to quantify the extent to which
co-used recommended queries are similar to each other.

We learn the n-gram similaritymeasure by framing the similarity-
induction task as a learning-to-rank problem [27]. To recommend
queries, we rank the n-grams in a document by using our n-gram
similarity measure in various ranking methods adapted from work
on using inter-document similarities for ad hoc document retrieval.

Empirical evaluation performed using data gathered from Ya-
hoo!’s search engine logs attests to the effectiveness of using inter
n-gram similarities, via our proposed similarity measure, to recom-
mend n-grams in documents as queries.
Summary of Contributions. (1) We address a novel task: recom-
mending n-grams in a document as search-engine queries for a
user reading the document; (2) we present the first (to the best of
our knowledge) suite of document-based query-recommendation
approaches3 which utilize inter-query relations for estimating the
likelihood that a given recommended query will be used; (3) we
devise an inter n-gram similarity measure and use it in a variety
of methods for ranking n-grams as recommended queries; (4) we
present an in-depth analysis of the merits of the proposed n-gram
similarity measure and those of the query recommendation meth-
ods that utilize it; and (5) we present a novel type of analysis of
document-based recommended queries which focuses on the simi-
larities of (i) search results pages (SERPs) retrieved for them and
(ii) click rates on these SERPs.

2 RELATEDWORK
In work on recommending search engine queries to a user reading
a document, the queries were either extracted from a query log [5,
7, 9, 19] or were generated based on the document text [24]. Using
information induced from a query log [5, 9, 19, 24] and the document
itself [5, 19, 24] can help in recommending queries. The task of
recommending queries from a query log is conceptually similar to
the task of entity linking [44]; i.e., linking an n-gram in a text to
an entity repository is similar to linking an n-gram in the text to
a query in a query log. There is work on using anchor text as a
substitute for a query log [11]. In contrast, we recommend n-grams
in the document to be used as queries. We rely only on information
in the document and some general corpus statistics. Our approach
outperforms a supervised method utilizing the document-based
features used for recommending queries from a query log [19].

Our approach is based on inter n-gram relations, where n-grams
are the candidate queries to recommend. Inter-query relations were
3Herein, “document-based query recommendation” refers to the task of recommending
queries to a user reading (or having read) a document.

used to diversify an initial list of recommended queries which was
not created by using inter-query relations [9]. Information about
whether queries belong to the same search session was also used for
query recommendation [5]. In contrast to our approach, an inter-
query similarity measure was not learned nor used to estimate the
basic likelihood that a query will be used by the user. Using our
similarity measure for diversification is a future direction.

In some work, queries were generated from a given excerpt of
text while putting emphasis on the potential retrieval effectiveness
of using these queries [24]. This is in contrast to other approaches [5,
9, 19] that are focused, as ours, on predicting which queries a user
will use. Some of the features we use for learning an inter n-gram
similarity measure are based on predicting query effectiveness.

There is a big body of work on suggesting queries in a search
session regardless of a document. Usually, the suggestions are based
on a prefix of a query the user typed, and are produced using query
log information, where the goal is to infer the current user’s search
intent (e.g., [2, 4, 12, 46]). In addition, there is work on using co-
occurrences of terms in the corpus to suggest queries for search
domains without query logs [3]. This approach is conceptually
reminiscent of our approach of using inter n-gram similarities in
the absence of query logs. However, we recommend n-grams in
documents to be used as queries; i.e., the user does not need to
formulate her information need while this is not the case in query
suggestions. In addition, we use many more features from different
sources of information, some of which are based on corpus statistics.

Recently, deep neural networks (specifically, transformers [48])
were used to generate queries from passages so as to use them
to expand the passage representation [34, 35]. In contrast to the
task we pursue here, the generated queries are not necessarily n-
grams in the passage and they are not evaluated based on whether
users reading the passage use them as search queries. Furthermore,
inter-query relations were not utilized in contrast to our approach.

The task of key phrase extraction is to identify the terms in the
document that best describe its content [32]. There is also work on
detecting key phrases for question generation [45]. However, we
recommend n-grams in documents to be used as queries.

There is work on predicting whether a query submitted by a
user to a search engine is relevant to a previously browsed news
article [37]. Our task is different: predicting which n-grams in a
document (e.g., article) are likely to be used as search queries.

The merits of using the learned similarity function in our meth-
ods are demonstrated by contrasting it with other similarity func-
tions in terms of the resultant query-recommendation effectiveness.
We also adopt a cluster hypothesis test, originally proposed for
evaluating inter-document associations [49], to evaluate our inter-
n-gram similarity measure. Similar variants of this test were used
to evaluate inter-passage [43] and inter-entity [41] similarities.

3 QUERY-RECOMMENDATION FRAMEWORK
Given a document d , we set out to produce a ranked list of n-grams
(sequences of consecutive terms); the topm will be recommended
as search-engine queries;m is a free parameter.

To effectively rank n-grams which are very short, a rich n-gram
representation is called for. Representing a document using infor-
mation induced from similar documents was shown to be of much



merit in work on ad hoc document retrieval (e.g., [21, 23, 28, 38]).
Motivated by this line of work, we study a suite of n-gram ranking
approaches that utilize inter n-gram relations.

Considering all possible n-grams in a document as candidate
queries may result in a very large pool, especially for long docu-
ments and when using n-grams of varying lengths. Thus, we start
by creating a pool composed of a subset of n-grams from all those
in the document. Then, we rank the n-grams in the pool and recom-
mend the top-m as queries. The ranking methods utilize an inter
n-gram similarity measure.

3.1 Selecting Candidates
We create a pool composed of a subset of n-grams from all those
that appear in the document. These n-grams are candidate queries
for recommendation. We consider as candidate n-grams the longest
sequences of entities (of type person, location or organization) [19],
proper nouns [24] or noun phrases [24]. In addition, for n-grams
which are entities and proper nouns, we also consider all their sub-
sequences. For example, for the entity “Duchess Kate Middleton”,
we consider “Duchess”, “Kate”, “Middleton”, “Duchess Kate”, “Kate
Middleton” and “Duchess Kate Middleton” as candidates. Our meth-
ods are not committed to specific named entity recognition and
part-of-speech tagging methods. (See Section 4.1 for details about
the methods used in our experiments.) We note that an n-gram
can appear several times in a text with different markups as the
markups depend on the context of the n-gram in the text; e.g., the
n-gram “JFK” can be marked as an entity of type person (the US
president) or of type location (the JFK airport). Yet, we consider
the n-gram once and keep the information of all of its occurrences
and markups in the document’s text. (A thorough analysis about
the type of queries issued by users and their occurrences in the
documents can be found in Section 4.2.1.)

Henceforth, Gd denotes the pool of candidates created for docu-
ment d ; д denotes an n-gram. In Section 4.2 we show that this pool
creation approach substantially reduces the number of candidate
n-grams. Still, the pool includes the vast majority of queries issued
by users reading the documents in our dataset.

3.2 Learning Inter N-Gram Similarities
The methods we consider below for ranking the n-grams in the pool
described in Section 3.1 utilize an inter-n-gram similarity measure.
We now turn to describe how this similarity measure is learned.

The cluster hypothesis for ad hoc document retrieval [47] states
that closely associated (i.e., similar) documents tend to be relevant
to the same requests. A similar hypothesis was stated for entity
retrieval [41]. Along these lines, we state a novel cluster hypothesis
for ranking n-grams as potential queries:

Cluster Hypothesis for Query Recommendation:
Two similar n-grams in a document are both likely to be used, or
not, by users reading the document as queries in a search engine.

Standard surface-level similarity measures, as those used for
documents and entities, are not likely to capture the desired type
of similarity (association) between n-grams. Therefore, we set out
to learn an inter-n-gram similarity measure so as to “adhere” to

Table 1: Summary of features used to learn an inter n-gram
similarity measure.

Family Features

Textual Similarities TFIDF, SentTFIDF
Semantic Similarities W2V1, W2V2, ESA
Proximity Features SharedSent, Proximity

N-gram Priors MaxIDF, AvgIDF, MaxSCQ, AvgSCQ,
InTitle, IPos, NgramTFIDF

N-gram Independent Features DocLen, Entropy

the hypothesis. Raiber et al. [40] applied a similar approach for
document retrieval; i.e., an inter-document similarity measure was
learned. However, most of their features are not applicable in our
setting where similarity is measured between short n-grams.

Some of the n-gram ranking approaches we consider utilize
clusters of n-grams that are induced using the learned similarity
measure. We first present in Section 3.2.1 the clustering technique
employed by these approaches, which also guides the learning of
the similarity measure. Then, in Section 3.2.2 we discuss the details
of learning the inter n-gram similarity measure.

3.2.1 Clustering N-Grams. We use nearest-neighbor clustering
as it showed much merit in comparison to other clustering tech-
niques in work on cluster-based document retrieval [21, 38]. A
cluster cд is created for each n-gram, д, in the pool of candidate
n-grams, Gd , created from document d . LetLд;sim (Gd ) be a ranked
list of all the n-grams д′ ∈ Gd induced using sim(д,д′); sim(·, ·)

is the inter n-gram similarity measure that we discuss below. The
cluster cд contains д and the k − 1 highest ranked n-grams д′ , д
in Lд;sim (Gd ); i.e., each cluster contains k n-grams; C(Gd ) is the
resultant set of clusters.

3.2.2 Learning a Similarity Measure. Following the clustering
approach just described, we learn and apply an inter n-gram similar-
ity measure as follows. Given a fixed n-gramд (∈ Gd ), wewould like
to estimate the similarity sim(д,д′) so as to rank n-grams д′ ∈ Gd
with respect to д. If д is (not) likely to be used as a query, we opt
for the highly ranked n-grams to be those which are (not) likely
to be used as queries. To learn and apply a similarity measure, we
represent each pair of n-grams д and д′ using a feature vector. We
consider 16 features that can be divided into 5 feature families, as
summarized in Table 1. We next discuss these features.

Textual Similarities. We use two textual similarity measures.
TFIDF is the cosine between the TF-IDF vectors representing д and
д′. Similarly, SentTFIDF is the cosine similarity between the TF-
IDF vectors that represent the texts that result from concatenating
the sentences in the document d that contain д and д′. The order
of concatenation has no effect since we use a bag-of-terms model.

Semantic Similarities. Textual similarity measures may fail to
quantify the similarity between short n-grams due to possible vocab-
ulary mismatch. Hence, we use semantic similarity measures. Let
v(w) denote the Word2Vec [33] representation of a termw and |д |
the number of terms in an n-gram д. We measure the similarity be-
tweenд andд′ usingW2V1 [36]: 1

|д |
∑
w ∈д maxw ′∈д′ cos(v(w),v(w ′)).

Since W2V1 is asymmetric, we also use W2V2, which is computed
by simply switching between д and д′ in W2V1. The next seman-
tic similarity measure that we consider is adopted from work on



passage and document retrieval [42]. The ESA (Explicit Semantic
Analysis [14]) similarity is used by representing each n-gram using
a vector that is defined over Wikipedia concepts and computing
the cosine similarity between the vectors. Additional details are
provided in Section 4.1.

Proximity Features. We assume that n-grams appearing many
times next to each other are more likely to be semantically related.
Therefore, the features we consider next quantify the proximity
between the different occurrences of the n-grams in the document
d . SharedSent is the number of sentences in d containing both д
and д′. Proximity is the average proximity between all the occur-
rences of д and д′ [8]. Specifically, let occ(д,d) denote the set of all
occurrences of д in d . Proximity is defined as:

1
|occ(д,d ) |

∑
oд ∈occ(д,d )

∑
oд′ ∈occ(д′,d ) exp

(
−
dist (oд,oд′ )2

2σ 2

)
;

dist(oд ,oд′) is the minimal distance between the positions of any
two terms of the two n-gram occurrences oд and oд′ and σ is a free
parameter.

N-gram Priors. The following features quantify the likelihood of
д′ to be used as a query (in d) independently of д. The first group
of n-gram priors are previously proposed effective pre-retrieval
query-performance predictors [15]. Originally, these predictors
were designed to predict ad hoc document retrieval effectiveness
based on information induced from the query and the document
corpus without using relevance judgments. They were also used to
improve retrieval effectiveness [26, 30]. The four prediction values
are computed for д′ using information induced from terms in д′

with respect to a collection of documents. Note that these predictors
are independent of the fixed n-gramд; hence, they serve as priors for
д′ being used as a query given the collection.MaxIDF andAvgIDF
are the maximum and average of the IDF values of the terms in
д′ [51]. MaxSCQ and AvgSCQ are the maximum and average of
the TF-IDF values of the terms in д′ computed with respect to a
collection of documents [51]. Details about the document collection
used for experiments are provided in Section 4.1.

We show in Section 4.2 that n-grams appearing at the beginning
of the document (a news article in our setting) or in the document’s
title are more likely to be used as queries by users. Therefore, we
define InTitle: a binary feature indicating if д′ appears in d’s title
and IPos: the inverse position of the first occurrence of д′ in d .
An additional feature is NgramTFIDF: the TF-IDF value of д′ in d
computed for the n-gram as a whole and not at the term level.

N-gram Independent Features. The features we define next quan-
tify different properties of the documentd independently of the pair
of n-grams д and д′. Note that these features have an effect only
when a non-linear model is used to learn the similarity between
n-grams. We use DocLen: the number of terms in d , and Entropy:
the entropy of the term distribution in d computed based on the
unsmoothed unigram language model induced from d ; Entropy
quantifies content repetition in the document.

3.3 Ranking N-Grams
We next describe methods of ranking the n-grams in the pool, Gd .
The higher an n-gram is ranked, the more likely it is presumed to
be used as a query. We study six n-gram ranking methods which we

adapted from work on ranking documents in response to a query.
The methods are divided into two groups: those that use the learned
similarity measure from Section 3.2 to cluster n-grams and those
that use the measure for ranking n-grams without utilizing clusters.

Cluster-Based Approaches. Two classes of cluster-based docu-
ment retrieval methods were proposed in the literature. The meth-
ods in the first class rank clusters based on their relevance to the
query, and then transform the ranking of clusters into a ranking
of documents by replacing each cluster with its constituent doc-
uments while omitting repeats [22, 29, 38]. The methods in the
second class use information induced from clusters to enrich the
representation of documents [21, 25, 28]. We consider several n-
gram ranking methods that are direct adaptations of document
ranking techniques from these two classes.

Let Lfinit (Gd ) be an initially ranked list of all n-grams д ∈ Gd
which was produced using some n-gram ranking function finit
based on the presumed likelihood of the n-grams to be used as
queries. For example, the n-grams can be ranked based on the
position of their first occurrence in d or by using a learning-to-rank
approach that integrates various features. Details about the ranking
functions finit we use for experiments are provided in Section 4.1.
We then use a rank-to-score transformation [10] to initially score д:

SInit (д)
def
=

1
rank(д;Lfinit (Gd )) + ν

; (1)

rank(д;L) is д’s rank in the list L and ν is a free parameter; the
rank of the highest ranked n-gram is 1. Some of the n-gram ranking
methods utilize C(Gd ): the set of n-gram clusters created from the
pool of n-grams, Gd , using the approach described in Section 3.2.

TheGM [29] andAMmethods, which belong to the first class of
cluster-based retrieval methods, score each cluster c ∈ C(Gd ) using

SGM (c)
def
=

∏
д∈c SInit (д)

1
k and SAM (c)

def
= 1

k
∑
д∈c SInit (д): the

geometric and arithmetic mean of the initial retrieval scores of its
constituent n-grams, respectively.

Another approach in this class, CLTR, is inspired by a state-
of-the-art learning-to-rank approach to ranking document clus-
ters [38]. Specifically, we represent each pair of a document and an
n-gram cluster as a feature vector4. Since the features proposed by
Raiber and Kurland [38] are not applicable to short n-grams, we
use a different set of features described in Section 4.1. The cluster-
ranking model can be trained using any learning-to-rank approach.

The Interf [21] method belongs to the second class of cluster-
basedmethods. An n-gramд that is not highly ranked inLfinit (Gd ),
but is highly similar to n-grams that are initially highly ranked,
should also be highly ranked according to our cluster hypothesis.
Therefore, Interf incorporates an estimate, called Aspect for aspect
models [21], that relies on the similarity of д to the clusters c ∈

C(Gd ) and the likelihood that these clusters contain a high ratio of
n-grams that are likely to be used as queries:

SAspect (д)
def
=

∑
c ∈C(Gd )

SAM (c)
1
k

∑
д′∈c

sim(д′,д). (2)

As was the case in Equation 1, we use a rank-to-score transfor-
mation to compute sim(д′,д): 1

rank (д;Lд′;sim (Gd ))+ν
; Lд′;sim (Gd )

4In our setting, a document essentially plays the role of the query used for ranking
document clusters in Raiber and Kurland [38].



is the ranking of all the n-grams д′′ ∈ Gd induced with respect
to д′ using sim(д′,д′′). Refer back to Section 3.2 for details. The
Interf method then linearly interpolates, using a parameter λ, the
normalized initial (Equation 1) and aspect (Equation 2) scores:

SInter f (д)
def
= (1 − λ)

SInit (д)∑
д′∈Gd SInit (д

′)
+ λ

SAspect (д)∑
д′∈Gd SAspect (д

′)
;

(3)
that is, д is rewarded if it is highly ranked by finit or if it is similar
to n-grams in clusters that contain a high fraction of n-grams that
are highly ranked by finit .

Non Cluster-Based Approaches. An alternative approach to Interf
that does not utilize clusters is Top, which rewards n-grams if they
are highly ranked by finit or if they are similar to other highly
ranked n-grams which do not necessarily belong to the same clus-
ters. Specifically, let Lτ

finit
(Gd ) denote the τ most highly ranked

n-grams in Lfinit (Gd ); τ is a free parameter. Top interpolates the
similarity-based score:

SSim (д)
def
=

∑
д′∈Lτ

finit
(Gd )

SInit (д
′)sim(д′,д) (4)

with д’s initial score:

STop (д)
def
= (1 − λ)

SInit (д)∑
д′∈Gd SInit (д

′)
+ λ

SSim (д)∑
д′∈Gd SSim (д′)

. (5)

Note that both Top and Interf reward an n-gram based on its initial
score and its similarity to other n-grams. In Top, similarity is with
respect to n-grams which are initially highly ranked. In contrast,
in Interf, similarity is with respect to n-grams which are members
of n-gram clusters which are (initially) highly ranked.

The Recursive Weighted Influx method (RWI) [23] is based on
a weighted directed graph G = (Gd ,wt). An edge is drawn from д
(∈ Gd ) to д′ (∈ Gd \ д) if д′ is among the δ nearest neighbors of д.
The inter n-gram similarity measure serves to determine the nearest
neighbors of an n-gram and the weights of the edges connecting
the vertices:

wt(д,д′) =
{ sim(д,д′) if rank(д′;Lд;sim (Gd )) ≤ δ ,
0 otherwise. (6)

Then, the PageRank algorithm [6] with the dumping factor φ is
used to estimate the centrality of д:

Cent(д)
def
=

∑
д′∈Gd

Cent(д′)
( 1 − φ

|Gd |
+ φ

wt(д,д′)∑
д′′∈Gd wt(д,д

′′)

)
. (7)

The final score of д is determined by integrating the initial score in
Equation 1 with the centrality score in Equation 7:

SRW I (д)
def
= SInit (д)Cent(д). (8)

Thus, д is rewarded if it is initially highly ranked and if its cen-
trality PageRank value in the similarity graph is high. There are
two fundamental differences between RWI and the Top and Interf
methods. The first is the way the initial n-gram score is used. In
Top and Interf, a linear interpolation is used, while in RWI a non
parametrized product is used. The second difference is the similarity
evidence that is used. In Top and Interf, direct similarity to other
n-grams is utilized. In RWI, a more evolved notion of similarity
(induced centrality) is utilized.

Table 2: Features used to represent a pair of an n-gramд and
a document (article) d for the initial n-grams ranking (Init).

Feature Description

Document Independent

IsEnt Is д an entity? [19]
ContainEnt Does д contain an entity? [19]
Len Number of terms in д [9, 24]
UniqLen Number of unique terms in д [9]
IMaxLen Inverse length of д’s longest term [9]

Document Dependent

InTitle Does д appear in d ’s title? [9, 19]
IPos Inverse position of д’s first occurrence in d [19]
TitleOverlp Fraction of д’s terms that appear in d ’s title [9, 19]
EntOverlap Fraction of д’s terms that appear in any entity in d [19]
EntTF Frequency of д in d if IsEnt = 1; 0 otherwise [19]
TitleEntTF Frequency of д in d ’s title if IsEnt = 1; 0 otherwise [19]
LogTF Logarithm of the frequency of д in d [9, 19, 24]
IDF IDF of д [9, 19, 24]
NgramTFIDF LogTF × IDF [9, 19]

4 EVALUATION
4.1 Experimental Setting

Data. The data used for experiments was collected from the
anonymous Yahoo! query log during 50 consecutive days in April-
May 2018 in the US. The documents in which we recommend
queries are news articles from Yahoo! News as they were shown
to trigger many search queries [19, 37]. Our data includes article-
query pairs where a query was issued to the search engine by at
least three users in a day during the first five minutes after reading
the article; no other actions were performed in between by the
users. We filtered out 40 navigational queries; e.g., “facebook.com”.

Overall, we collected 588590 article-query pairs (15967 articles).5
Since our goal is to highlight n-grams in the article, we reduced
this set to include only pairs in which the query appeared in its
entirety in the article. The resultant set, denoted Base, contains
26217 pairs (10256 articles). In addition, a random sample of 1000
articles and their corresponding queries (5464 pairs) from Base
was annotated by professional in-house editors.6 The editors were
asked to mark pairs in which the query (n-gram) was likely to
be “triggered” by (and relevant to) the article (cf. [19]). Each pair
was annotated by one editor. This set is denoted Editorial. We
tokenized the texts, removed punctuation marks and stopwords
(on the INQUERY list [1]) from articles and queries. We split the
articles into sentences before creating the pool of candidate n-grams
to avoid using n-grams that span several sentences. The Stanford
CoreNLP toolkit [31] was used for experiments.

Initial Ranking. We apply a learning-to-rank approach to in-
duce an initial ranking of n-grams in an article by their presumed
likelihood to serve as queries. The approach does not account for
the relations between n-grams. The initial n-gram ranking, hence-
forth Init, is used by the n-gram ranking methods described in
Section 3.3 and serves as our baseline ranking from which the ini-
tial list Lfinit (Gd ) is derived. To induce the initial ranking, each
pair of an article and n-gram is represented by a feature vector. In
previous work, query logs and personal historical information were
used to derive some of the features. These sources of information
are not used in our setting. To the best of our knowledge, there is

5The inverse document frequency (IDF) and the pre-retrieval predictors in our experi-
ments were computed with respect to this set of articles.
6Each article in this set has at least one n-gram in the pool that was used as a query.



no baseline that suits the specific setting we address here. There-
fore, we used all the features from Kong et al. [19] which do not
rely on personal information and additional document-independent
features from Cheng et al. [9]. We modified some of the features
to rely on corpus statistics rather than on user preferences or his-
torical statistics. A subset of the features we use was shown by
Kong et al. [19] to be highly effective for recommending queries
that appear in search logs. Hence, our initial ranking is an effective
query recommendation baseline.

The features used are listed in Table 2. Some of the features
quantify surface-level properties, e.g., Len, UniqLen and IMaxLen7.
Other features quantify properties related to entities, such as IsEnt
and ContainEnt. In addition to the five document-independent
features just mentioned, we also use nine document-dependent
features. InTitle and IPos are based on the position of the n-gram in
the article; these features were also used to learn the inter n-gram
similarity function in Section 3.2. TitleOverlp8 is another feature
that gives special emphasis to the article’s title. EntOverlap9, EntTF
and TitleEntTF quantify properties related to entities in the context
of the article. LogTF, IDF10 and their product NgramTFIDF, quantify
the importance of an n-gram in the article; NgramTFIDF was also
used in Section 3.2 for learning the similarity function.

The CLTRmethod, based on ranking n-gram clusters (see Section
3.3), uses the average and maximum of the values of features from
Table 2 attained for the cluster’s constituent n-grams. Overall, it
is based on 28 features: the 14 features in Table 2 × 2 (average and
maximum).

Evaluation Metrics. We use NDCG@m, MAP@m, P@m (preci-
sion) and MRR@m to estimate the effectiveness of the ranked lists
of recommended n-grams. All the metrics are computed for the top
m = 5 and topm = 20 ranked n-grams.

In addition, we apply Voorhees’ nearest-neighbor cluster hy-
pothesis test [49] to study the extent to which the n-gram cluster
hypothesis we proposed (Section 3.2) holds for the similarity func-
tion learned in Section 3.2 and other similarity functions used as
baselines. For each n-gramд ∈ Gd that was used as a query by users
reading d , we count how many of its k − 1 most similar n-grams
(neighbors) in d11 were also used as queries by users.

Statistical significant differences are measured using the two-
tailed paired t-test at a 95% confidence level with Bonferroni cor-
rection applied to multiple hypothesis testing.

Training Models. We used three effective learning-to-rank [27]
approaches for (i) learning the inter n-gram similarity measure, (ii)
inducing the initial ranking Init and (iii) training CLTR: RankSVM [18]
(SVM in short), MART [13] and LambdaMART [50] (LMART in
short).12 All features were min-max normalized.

7IMaxLen was originally defined as the maximum length of a term in a query [9]; we
use the inverse of the maximum length of a term in an n-gram.
8Kong et al. [19] used the term overlap between the query and the title. We use the
fraction of terms that appear in the title so as not to favor long n-grams.
9Kong et al. [19] used the term overlap between a query and the entities that appear
in the article. We count the number of terms in an n-gram that appear in any entity in
the article and divide by the n-gram’s length so as not to favor long n-grams.
10Kong et al. [19] computed LogTF and IDF using a query log.
11All the articles in our experiments contain at least k n-grams.
12For SVM, we used the SVMrank library (http://svmlight.joachims.org). For MART
and LMART, we used the RankLib library (https://tinyurl.com/ranklib).

We used ten-fold cross validation over articles to train the models
and set free-parameter values via the following two-phase proce-
dure. We first used six folds to train a model and three folds to set
its hyper-parameter values (i.e., validation). Once the best parame-
ter values were selected, a final model was learned using all nine
training folds. This procedure was repeated ten times, where each
time a different fold was used for testing. We report the average
performance over all the articles when these were part of the test
folds. (Each article was a member of a single test fold.)

To learn the n-gram similarity measure, NDCG@4 serves as the
optimization metric. (The number of nearest neighbors used for an
n-gram is 4.) To rank clusters in CLTR, the cluster score is set to
the number of n-grams in the cluster that were used as queries by
users.13 NDCG@20 was the optimization criterion for training Init
and CLTR, and for setting hyper parameters.

Free-Parameter Values. The size of the clusters, k , is set to 5.
Such small (overlapping) clusters were shown to be effective in
past work on cluster-based document [20, 22, 38] and entity [41]
retrieval. The Word2Vec and ESA vectors are based on a dump of
Wikipedia from July 2018. For Word2Vec, we used the Continuous
Bag-of-Words (CBOW) model and set the dimension of the vec-
tors and the window size to 300 and 5, respectively. For ESA, we
used Apache Lucene’s14 Okapi BM25 and set k = 1.2 and b = 0.75.
The value of c in SVM was selected from {0.1, 0.01, 0.001}. The
number of trees and leaves in MART and LMART were set to val-
ues in {100, 250, 500} and {10, 25}, respectively. For the Proximity
feature, we set σ = 2000 following work on utilizing term proxim-
ities in passage retrieval [8]. The values of λ and ν were selected
from {0, 0.1, . . . , 1} and {0, 30, 60, 90}, respectively. The number
of top ranked n-grams, τ , in Top is in {5, 10, 25, 50}. The dumping
factor, φ, and the number of nearest neighbors, δ , in RWI are in
{0, 0.1, . . . , 0.9} and {4, 9, 19}, respectively.

4.2 Experimental Results
Our approach is based on creating a pool of candidate n-grams from
a document, and recommending n-grams from the pool as queries
by ranking the pool. In Section 4.2.1 we demonstrate the merits of
the pool creation method proposed in Section 3.1. For this analysis,
we use the Base set of article-query pairs. The rest of the analysis
and evaluation is based on the Editorial set. In Section 4.2.2 we
analyze properties of the inter n-gram similaritymeasure. In Section
4.2.3 we analyze the performance of our query recommendation
methods, which utilize the n-gram similarity measure.

4.2.1 Creating a Pool of Candidate Queries (N-Grams). In what
follows, we study the merits of applying the approach proposed in
Section 3.1 for creating a pool of n-grams that are candidates for
queries. We also provide some insights about the queries that users
reading an article issue. The analysis is based on the Base set of
query-article pairs. We found that 75% of the queries issued by users
reading an article are sequences of entities: 73.7% of these queries
contain a person, 11.7% a location and 16% an organization.15 In ad-
dition, 77.2% of all the queries are proper nouns and 60.3% are noun

13Using NDCG@5 as the cluster score (cf., [38]) resulted in inferior performance.
14http://lucene.apache.org
15The numbers do not sum to 100 because an n-gram can contain several entities.

http://svmlight.joachims.org
https://tinyurl.com/ranklib
http://lucene.apache.org
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Figure 2: Left: length distribution of queries issued by users
and of candidate n-grams; ‘5+’: at least 5 terms. Middle: oc-
currence distribution of queries in an article; ‘9+’: at least 9
occurrences. Right: position distribution of the first occur-
rence of queries in articles issued by users; articles are split
to ten quantiles.

Table 3: The nearest-neighbor cluster hypothesis test. ‘r ’
and ‘l ’ mark statistically significant differences with Ran-
dom and LMART (except for Oracle), respectively.

Random SVM MART LMART Oracle

0.162 0.826r l 1.401r l 1.472r 3.300

phrases. Overall, the candidate pool of n-grams we created includes
90.1% of all the queries in the Base set that were issued by users;
for only 3% of the articles there was no intersection between the
set of queries issued by users and the candidate n-grams used. The
size of the candidate pool is 5.2 times smaller than the total number
of n-grams that contain up to 4 terms. These findings suggest that
our pool creation approach considerably reduces the number of
candidate n-grams, but the pool includes the vast majority of the
queries issued by users for the considered articles.

Figure 2 (left) presents the length distribution of the candidate
n-grams in the created pool and the queries issued by users reading
an article in the Base set. We see that both are relatively short: about
86% of the queries issued by users and 70% of the candidate n-grams
in the pool are shorter than 3 terms. This finding is aligned with
past work that reported an average query length of 1.9 terms [16].
We also found that the issued queries are not only very short but
that they also occur very few times in the article’s text as presented
in Figure 2 (middle): about 61% of the queries appear only once and
about 16% only twice.

Figure 2 (right) presents the position distribution of the first
occurrence of queries in an article issued by users; the articles are
split into 10 quantiles. We see that users tend to issue queries that
appear at the very beginning of the article. This finding echoes
the results reported by Kong et al. [19] for queries “triggered” by
the article. We also found that 32% of the queries appear in the
article’s title. Indeed, we show in Section 4.2.2 that InTitle is the
most important feature among those considered for learning the
inter n-gram similarity measure.

4.2.2 Learning an Inter N-Gram Similarity Measure. Our query
recommendation approach utilizes an inter n-gram similarity mea-
sure which we now turn to analyze.

Cluster hypothesis test. Table 3 reports the extent to which our
cluster hypothesis from Section 3.2 holds according to the nearest-
neighbor test described in Section 4.1; the similarity function in
the test is learned using SVM, MART and LMART. We present for
reference two additional baselines. The first is Random, where an
n-gram’s neighbors are randomly selected16. The second is Oracle,
where the neighbors are selected based on whether they were
actually used as queries by users; i.e., this is the upper bound on
the nearest-neighbor cluster hypothesis test.

Table 3 shows that the cluster hypothesis always holds to a sub-
stantially and statistically significantly larger extent when using
the learned similarity function than in Random. The numbers at-
tained for non-liner learning-to-rank models (MART and LMART)
are considerably higher than those for a linear model (SVM). The
hypothesis holds to the largest extent for LMART: this result (1.472)
constitutes 44.6% of the maximum potential (3.3 for Oracle) com-
pared to only 4.9% for Random. This finding suggests that our
approach to learning inter n-gram similarities is quite effective in
coupling n-gram pairs where both are either used, or not, as queries.
Analyzing SERPs. We next turn to analyze the relations between
search results pages (SERPs) retrieved for pairs of similar — as
deemed by our learned similarity measure — queries that originate
from the articles and their clicks. This type of analysis for article-
based query recommendation is novel to this study. We consider
query pairs where the first is a seed: an n-gram in the pool which
was used as a query; the second is any of its k − 1 neighbors which
was also used as a query; for seeds we consider only queries with
at least one neighbor which is also a query.

SERP similarity. We measure the similarity between two SERPs
using the cosine between the TF.IDF vectors representing the con-
catenation of the titles of the top-5 Web pages on the SERPs17. We
then average these similarities for seed-neighbor pairs over search
sessions, neighbors per seed and then seeds. The resultant average
cosine value for using LMART, MART and SVM to learn the inter
n-gram similarity measure which determines nearest neighbors
was .164, .161 and .229, respectively; that is, using SVM results in a
similarity measure that is more aligned with similarities between
retrieved SERPs than when using LMART and MART.

Clicks. For each seed (query) in an article, and for each of its
(query) neighbors, we computed the average number of clicks over
query sessions — referred to as a click value. We computed Pearson
correlation, over articles in the Base set, between the average click
value per article of seeds and the average click values for their
neighbors: .374, .328 and .411 for LMART, MART and SVM, respec-
tively. That is, using SVM to learn our n-gram similarity measure
results in stronger correlation of click rates for the retrieved SERPs
of seeds and their neighbors than when using LMART and MART.

To shed more light on the different findings from above between
using SVM and LMART or MART, we computed some additional
similarity statistics between (query) seeds and their (query) neigh-
bors. The average term-based Jaccard coefficient between a seed
and its neighbors was .079, .079 and .161 for LMART, MART and

16We compute the probability that a randomly selected neighbor is used as a query
(cf., [43]).
17IDF was computed over all the SERPs retrieved for all the queries in the Base set.



Table 4: The nearest-neighbor cluster hypothesis test when
using a single feature (Only) or excluding the feature (Ex-
clude) to learn the n-gram similarity measure. ‘∗’ marks sta-
tistically significant differences with using all the features.

Family Feature Only Exclude

Textual Similarities TFIDF 0.425∗ 1.432∗
SentTFIDF 0.336∗ 1.446∗

Semantic Similarities
W2V1 0.419∗ 1.447∗
W2V2 0.446∗ 1.441∗
ESA 0.384∗ 1.435∗

Proximity Features SharedSent 0.517∗ 1.445∗
Proximity 0.644∗ 1.371∗

N-gram Priors

MaxIDF 0.252∗ 1.449
AvgIDF 0.240∗ 1.492
MaxSCQ 0.706∗ 1.354∗
AvgSCQ 0.619∗ 1.398∗
InTitle 0.821∗ 1.368∗
IPos 0.483∗ 1.456
NgramTFIDF 0.629∗ 1.325∗

N-gram Independent Features DocLen − 1.442
Entropy − 1.461

All Features 1.472 −

SVM, respectively. We also found that the majority of (query) neigh-
bors of a (query) seed that result from using SVM are also neighbors
when using LMART and MART, but the reverse does not hold. We
thus arrive at the following conclusion: using SVM results in an
inter n-gram similarity measure that rewards high surface-level sim-
ilarities to a higher extent than LMART and MART; this translates
to higher SERP and click-rates similarities. On the other hand, using
LMART and MART result in improved coupling of n-grams which
are queries used by users as the cluster hypothesis results from
Section 4.2.2 show. Below we report results when using LMART
which yields the highest cluster hypothesis results.
Feature Importance. The similarity function we learn is based
on 16 different features. In Table 4 we present the extent to which
the nearest-neighbor cluster hypothesis holds when the similarity
between n-grams is determined using only one feature at a time.
We also show the results when excluding each feature at a time
when learning the similarity function. We see that among all the
considered features, when used alone, the cluster hypothesis holds
to the largest extent for the InTitle feature (0.821) followed by the
pre-retrieval predictor MaxSCQ (0.706). These numbers are how-
ever much lower than that attained when all the features are used
(1.472). In Section 4.2.3 we study the effect of using InTitle instead of
our learned similarity function in the RWI n-gram ranking method.

Only the removal of AvgIDF improves the results of the test
although not to a statistically significant degree. This finding shows
that our similarity function can potentially be further improved
by feature selection. We note that AvgIDF, when used alone, is a
rather weak similarity indicator. The biggest drop is attained when
NgramTFIDF and MaxSCQ are excluded. More generally, when
excluding a single feature, we see a statistically significant drop in
the extent to which the hypothesis holds, according to the nearest-
neighbor test, for 11 out of the 16 considered features. This finding
attests to the complementary nature of the features we use.

4.2.3 RecommendingQueries. We now turn to analyze the ef-
fectiveness of the different n-gram ranking methods we proposed

Table 5: Main result: ranking n-grams. ‘i’ and ’r ’ mark sta-
tistically significant differences with Init and RWI, respec-
tively. Boldface: best results in a column.

NDCG MAP p MRR
@20 @5 @20 @5 @20 @5 @20 @5

Init 58.4 49.5 37.6 30.2 15.4 33.9 71.5 70.4
GM 58.1r 50.5r 37.7r 31.0r 15.0ir 34.4r 72.6r 71.5r
AM 58.3r 50.3r 37.7r 30.7r 15.2r 34.1r 72.3r 71.3r
CLTR 55.8ir 50.0r 36.4r 30.8r 13.5ir 32.7r 74.2i 73.1ir
Interf 62.3i 53.3ir 41.1i 33.2i 16.2i 35.7ir 75.9i 75.0i
Top 62.0i 53.5i 41.0i 33.3i 16.1i 36.2i 75.1i 74.2i
RWI 62.3i 54.3i 41.2i 33.8i 16.1i 36.8i 76.1i 75.3i

in Section 3.3. Ranking is based on the presumed likelihood that
an n-gram will be used as a query. For this evaluation, we use the
Editorial set. Unless otherwise specified, we do not use the editors’
annotations but rather the information about which recommended
n-grams were actually used as queries.
Main Result. As already noted, we used three learning-to-rank
approaches (SVM, MART and LMART) to induce an initial ranking
Init upon which the methods operate. Table 5 presents for each
method, including Init, the best results attained when using one
of the three approaches18. In all cases, the inter n-gram similarity
function was learned using LMART. (See Section 4.2.2 for details.)

We see in Table 5 that GM and AM outperform Init in most
cases, but the differences are not statistically significant. CLTR,
which utilizes aggregates of the features used by Init, outperforms
Init in half of the cases (two of these differences are statistically
significant); it is also statistically significantly outperformed by Init
in two cases. Interf, which uses information induced from clusters
to enrich the representation of n-grams, outperforms all the cluster-
ranking approaches (GM, AM and CLTR). Interf, Top and RWI
always statistically significantly outperform Init, but RWI does so
to a larger extent. This finding attests to the merits of utilizing
inter n-gram relations, specifically our learned n-gram similarity
measure, for ranking n-grams by the presumed likelihood that they
will be used as queries. In themajority of the cases RWI outperforms
Interf and Top; some of the differences with Interf are statistically
significant. Therefore, in the following analysis we focus on RWI.
Varying Free-Parameter Values. In Figure 3 we study the effect
of varying the values of the three free parameters incorporated in
RWI on its NDCG@20 performance. (Recall that throughout the
evaluation, the values are set using cross validation.) We see that
the best performance is attained when a relatively large number of
neighbors (δ ; Equation 6) is used and when a relatively high weight
is placed on the inter n-gram similarity estimate which serves as
an edge weight (φ > 0.5; Equation 7). We also see that using a more
flat rank-to-score distribution (higher ν in Equation 1) results in
reduced performance.
Varying the N-Gram Similarity Function. In work on utilizing
inter-document similarities for document retrieval, it was shown
that higher results in the nearest-neighbor cluster hypothesis test
do not always translate to improved retrieval effectiveness [39]. In
Table 6 we present the effectiveness of RWI when the inter n-gram
18The best performance of Init, GM and CLTR was attained when LMART was used.
The performance of Interf, AM, Top and RWI was best when MART was used.
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Figure 3: NDCG@20 performance of RWI as a function of δ
(left), φ (middle) and ν (right).

Table 6: The effect of the inter n-gram similarity measure
on the performance of RWI. ‘i’ and ‘l ’ mark statistically sig-
nificant differences with Init and LMART, respectively. The
best result in a column is boldfaced.

NDCG MAP p MRR
@20 @5 @20 @5 @20 @5 @20 @5

Init 58.4 49.5 37.6 30.2 15.4 33.9 71.5 70.4

RWI MART 59.9il 51.3il 38.9il 31.4l 15.6l 34.7l 74.0il 73.0il
LMART 62.3i 54.3i 41.2i 33.8i 16.1i 36.8i 76.1i 75.3i

similarity measure is learned using MART and LMART. The results
for SVM and InTitle19, the most informative feature according
to the cluster hypothesis test (refer back to Section 4.2.2 for the
full analysis), are not presented: for these similarity measures the
value of φ (Equation 7) was always set to 0 in the cross validation
procedure. Hence, their overall performance was identical to that
of Init. We see in Table 6 that the best performance is attained for
LMART followed by MART and Init (and accordingly SVM and
InTitle).20 The same performance order of approaches was induced
by the results of the cluster hypothesis test. (Refer back to Table 3.)
To conclude, in our setting, there is correspondence between the
extent to which the cluster hypothesis test holds and the resultant
performance of a highly effective approach that utilizes the inter
n-gram similarity measure.
Varying the Initial Ranking. In Table 7 we present the perfor-
mance of RWI when different learning-to-rank approaches are used
for producing the initial ranking Init; LMART is used to learn the in-
ter n-gram similarity measure. We see that the worst performance
of Init is attained for SVM. Yet, we found that the performance
attained for SVM (NDCG@20 is 39.7) is much higher than that
attained when any feature that it incorporates is used alone: the
best results were attained for EntTF (NDCG@20 is 35.1), followed
by TitleOverlp (NDCG@20 is 31.5) and InTitle (NDCG@20 is 31.4).
(The full analysis is omitted as it provides no additional insights.)
Init is more effective when LMART is used, while RWI is more
effective when MART is used. We also see that regardless of the
learning-to-rank model employed, RWI outperforms Init with all of
the differences being statistically significant. This finding suggests
that RWI is effective when using initial n-gram ranking functions
of varying effectiveness.

19Since InTitle is a binary feature, we used MaxSCQ, the second most informative
feature, for breaking ties. The results of the cluster hypothesis test for the resultant
similarity measure is 0.977.
20Init is always outperformed by MART, which is always statistically significantly
outperformed by LMART.

Table 7: The effect of the learning-to-rank approach used to
induce the initial ranking (Init) on RWI’s performance. ‘i’:
statistically significant differences with Init per learning-to-
rank model. Boldface: the best result in a column.

NDCG MAP p MRR
@20 @5 @20 @5 @20 @5 @20 @5

SVM Init 39.7 29.8 21.1 15.1 12.2 23.0 45.0 42.9
RWI 54.2i 46.6i 34.1i 27.6i 14.2i 32.3i 67.2i 66.0i

MART Init 58.1 49.3 37.3 30.1 15.4 33.6 70.8 69.8
RWI 62.3i 54.3i 41.2i 33.8i 16.1i 36.8i 76.1i 75.3i

LMART Init 58.4 49.5 37.6 30.2 15.4 33.9 71.5 70.4
RWI 62.1i 54.3i 41.2i 33.8i 16.1i 37.1i 75.8i 74.9i

Table 8: Editorial-based evaluation. ‘i’: statistically signifi-
cant difference with Init. Bold: best result in a column.

NDCG MAP p MRR
@20 @5 @20 @5 @20 @5 @20 @5

Init 61.1 51.5 42.3 35.7 12.9 31.2 69.7 68.5
RWI 65.3i 56.4i 46.6i 40.1i 13.6i 33.9i 74.2i 73.3i

EvaluationBased onEditors’ Labels. Inspired by Kong et al.’s [19]
analysis of queries “triggered” by an article, we study the effective-
ness of our approach in predicting queries (n-grams), within the
article, that according to human annotators are triggered by (and
related to) the article’s content21. The labels assigned by the editors
are used here — and only here — only for evaluation and not for
training the models. The results are presented in Table 8. We see
that RWI substantially and statistically significantly outperforms
Init which, as noted in Section 4.1, is a highly effective baseline for
document-based query recommendation.

5 CONCLUSIONS AND FUTUREWORK
We addressed the novel task of recommending n-grams in a docu-
ment read by a user as search engine queries. Our approach is based
on utilizing inter-query relations. More specifically, we presented a
new supervised inter n-gram similarity measure, and used it in a
variety of query recommendation methods adapted from work on
ad hoc document retrieval.

Empirical evaluation attests to the clear merits of using inter
n-gram similarities for query recommendation. We also presented
a novel type of analysis of document-based recommended queries
and applied it to queries used by Yahoo!’s search engine users after
they have read documents. The analysis is based on the similarities
between SERPs retrieved for the queries and their click rates.

Automatically determining the number of n-grams to highlight in
an article aswell as decidingwhich occurrence, or occurrences, of an
n-gram to highlight are interesting research challenges. In addition,
integrating the preferences and interests of the user with our inter
n-gram similarity measure is an interesting future direction.
Acknowledgments. We thank the reviewers for their comments.
This paper is based upon work supported in part by the Israel
Science Foundation under grant no. 1136/17.

21In contrast, the evaluation thus far was based only on whether an n-gram was
actually used as a query or not.
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